
Configuration Space Exploration
for Digital Printing Systems ?

Jasper Denkers1[0000−0003−3014−8324], Marvin Brunner2,
Louis van Gool3, and Eelco Visser4[0000−0002−7384−3370]

1 Delft University of Technology, the Netherlands, j.denkers@tudelft.nl
2 Canon Production Printing B.V., the Netherlands, marvin.brunner@cpp.canon
3 Canon Production Printing B.V., the Netherlands, louis.vangool@cpp.canon

4 Delft University of Technology, the Netherlands, e.visser@tudelft.nl

Abstract. Within the printing industry, much of the variety in printed
applications comes from the variety in finishing. Finishing comprises the
processing of sheets of paper after being printed, e.g. to form books.
The configuration space of finishers, i.e. all possible configurations given
the available features and hardware capabilities, are large. Current con-
trol software minimally assists operators in finding useful configurations.
Using a classical modelling and integration approach to support a vari-
ety of configuration spaces is suboptimal with respect to operatability,
development time, and maintenance burden.
In this paper, we explore the use of a modeling language for finishers
to realize optimizing decision making over configuration parameters in
a systematic way and to reduce development time by generating control
software from models.
We present CSX, a domain-specific language for high-level declarative
specification of finishers that supports specification of the configuration
parameters and the automated exploration of the configuration space of
finishers. The language serves as an interface to constraint solving, i.e.,
we use low-level SMT constraint solving to find configurations for high-
level specifications. We present a denotational semantics that expresses
a translation of CSX specifications to SMT constraints. We describe the
implementation of the CSX compiler and the CSX programming envi-
ronment (IDE), which supports well-formedness checking, inhabitance
checking, and interactive configuration space exploration. We evaluate
CSX by modelling two realistic finishers. Benchmarks show that CSX
has practical performance (<1s) for several scenarios of configuration
space exploration.

1 Introduction

Digital printing systems are flexible manufacturing systems, i.e. manufacturing
systems that are capable of adjusting their abilities to manufacture different

? © The Authors; licensed under Creative Commons License CC-BY.
https://doi.org/10.1007/978-3-030-92124-8 24. This version is an extended version
with appendices on declarative semantics and inhabitance.

https://doi.org/10.1007/978-3-030-92124-8_24

2 J. Denkers et al.

types and quantities of products, without expensive hardware changes. The va-
riety in printing applications stems from both printing (printing on sheets of pa-
per) and finishing (processing collections of printed sheets, e.g. to form a book).
The configuration space for a digital printing system consists of all possible con-
figurations given the system’s features and hardware constraints. For producing
a booklet of a particular size, a printed stack of sheets can be stitched, it can be
folded, and it can be trimmed. Optionally, the sheets can be rotated in an inter-
mediate production step such that a single trimming component can be used for
trimming in multiple dimensions. The decisions made for these manufacturing
parameters influence important factors such as productivity (production time
increases when sheets are rotated) or efficiency (paper is wasted when input
sheets are trimmed).

Ideally, control software assists operators in exploring the configuration space.
For example, given some available paper and the intent to produce a booklet, the
software should automatically derive a viable manufacturing configuration. Such
a configuration e.g. comprises the orientation of the input sheets, the number
of stitches, and the amount of side and face trimming needed to get the desired
end result. In addition, an optimization objective can be relevant while finding a
configuration, e.g. minimizing paper waste. The control software and user inter-
faces of state of the art digital printing systems do not support such automated
configuration space exploration. Instead, operators have to provide configura-
tions for finishers manually. A configuration can be simulated; by “executing”
the finishing process in software, finishing viability can be checked without wast-
ing resources. Still, it remains a cognitively intensive task for operators to find
a valid or optimal configuration.

Finishers are produced by many vendors and integrating them with printers
is non-trivial. Such integration involves connecting the control software of the
printer and finishers and driving embedded software components. Using a clas-
sical modeling and integration approach to support the variety of finishing is
suboptimal with respect to development time and maintenance burden. Issues
with such a classical approach are the long code-build-test cycle and the large
amount of finisher vendors and models that must be supported for many years.
The translation of the mechanical specifications into control software code gives
rise to additional complexity.

Our objective is to obtain an effective, efficient, and scalable method for
modeling finishers and obtaining control software for finishers that support au-
tomated configuration space exploration. In this work, we investigate how lin-
guistic abstraction can help to model the configuration space of digital printing
systems, and how we can automatically derive environments for configuration
space exploration from such specifications.

The global characteristics of finishers make the use of constraint (SMT) solv-
ing a natural fit for realizing environments for configuration space exploration.
For example, trimming the paper along a certain dimension might impose a spe-
cific orientation or transformation in an earlier production step. A constraint-
based approach considers its specifications as global and will take into account

Configuration Space Exploration for Digital Printing Systems 3

interdependent system-level constraints when finding solutions, i.e., configura-
tions. A constraint-based model of a finisher contains a representation of the
input materials at intermediate locations in the system. However, for modelling
domain objects such as sheets and stacks, abstraction mechanisms such as classes
are not naturally available in SMT modelling. An SMT model of a finisher re-
quires low-level encoding of the properties of the materials at all locations. There-
fore, expressing finishers in SMT by hand is tedious, error prone, and is not in
terms of domain concepts. Additionally, an SMT model of a finisher is complex
to understand and difficult to maintain.

In this paper, we present CSX, a domain-specific language for the high-
level declarative specification of finishers. The language supports specification of
input materials, configuration parameters, output products, and finishing con-
straints in terms of domain concepts. The CSX IDE supports the development
and checking of specifications and the automated derivation of an environment
for configuration space exploration by operators of the finishers.

CSX provides a domain-specific interface to SMT solving by abstracting and
structuring over low-level properties. We translate specifications to the SMT
domain and use existing solvers to find solutions at the level of properties and
finishing parameters. A solution in the SMT domain corresponds to a valid
configuration. Unsatisfiability at the SMT level indicates an empty configura-
tion space, i.e., no finishing possibilities. By mapping SMT solutions back to
the specification level, we can interpret CSX specifications in multiple modes:
checking whether a configuration is valid, finding an (optimal) configuration,
and validating specifications. By caching invocations of the solver in the IDE,
response times are improved which leads to an interactive editing experience.

The approach of specifying a finisher with CSX and deriving control soft-
ware has similarities with the approach of simulation in control software. Both
approaches take representations of the products being produced at intermedi-
ate locations in the devices. However, while simulation involves an operational
and sequential application of transformations on objects, a constraint-based ap-
proach considers the devices globally. CSX improves over simulation in the sense
that it derives environments that can search for (optimal) configurations in an
automated way, taking system-global interdependencies into account.

We evaluated the design and implementation of CSX by modelling two fin-
ishers: a perfect binder and a booklet maker. In the process of modelling these
devices, we have experimented with various encodings. For both cases, we bench-
mark the configuration space exploration performance for several scenarios.

Contributions To summarize, the contributions of this paper are the following:

– We have developed CSX, a declarative language for the specification of fin-
ishers at the conceptual level of the domain. We interpret CSX specifications
for several modes of configuration space exploraton: checking whether con-
figurations are valid, finding optimal configurations under objectives, and
interactively validating specifications.

4 J. Denkers et al.

– We define a denotational semantics of CSX in terms of SMT constraints that
serves as an interface to solvers that can be used to find models in order to
check inhabitance of a specification and to explore the configuration space
of the specified finisher.

– We realize a programming environment for CSX that integrates an SMT
solver as back-end and that presents solutions in terms of the specification.

– We evaluate CSX by specifying two types of finishers: a perfect binder and
a booklet maker. For these cases, we benchmark the performance for a con-
figuration space exploration scenario with and without optimization.

2 Finishers in the Digital Printing Domain

In this section, we discuss the domain of digital printing systems with finish-
ers. Complete printing systems for e.g. producing books include, in addition
to printing itself, finishing capabilities. Finishing comprises the processing of
printed sheets of paper into end products. For example, a stack of printed sheets
could be stapled, folded, and trimmed to result into a booklet; stapling, folding,
and trimming are finishing operations. Finishing devices need to be integrated
with the printing system for realizing an integrated end-to-end experience for
the print system end-users (i.e. operators in print shops).

The turnaround time of integrating finishers with printers is high because of
multiple challenging aspects. First, finishers are often produced by external ven-
dors and communication is mostly documentation based and thus requires inter-
pretation, reviews, implementation, and testing. Second, obtaining good system
behavior requires mechanical, electrical and software interfaces to be matched
well between the printer and finisher. Third, total aspects such as reliability
are the result of all the mentioned interfaces to be well designed. Considerable
testing time is needed to confirm reliability.

Creating control software that is user-friendly for operators is difficult and
requires a lot of manual programming. This is because of the high variability and
many configuration parameters in print and finishing systems. A typical print
and finishing system has more than 200 accessible parameters for the operator,
that are also interdependent. Because the whole production process is a sequence
of production steps, choices that you have to make in the beginning influence
the steps later on. From the product line perspective, the control software sup-
ports tens of different finisher types, that each of them can have more than 100
commercial variations. For all variations, the parameters that are accessible for
operators can vary.

Ideally, operators can use the combination of a printer with finishers as an
end-to-end solution instead of having to configure each device separately. Ad-
ditionally, optimization capabilities are also useful when considering the system
as a whole. For example, an operator would like to produce booklets with the
available resources and while minimizing paper waste or while optimizing pro-
ductivity. If the different configuration possibilities impose a tradeoff between
e.g. resource consumption and productivity, an operator should be able to make

Configuration Space Exploration for Digital Printing Systems 5

Jogging

bookblock stack

Glueing

Milling cover sheet

Creasing

Covering

perfectly bound book

configurable

not configurable

Fig. 1: Schematic view of the
perfect binding book producing
process. Only milling, creasing,
and covering are configurable
and therefore impact the config-
uration space. Jogging and glue-
ing are automatically configured
by the device itself.

courtesy creases
spine creases

book block cover

Fig. 2: A perfectly bound book
viewed from the top. Spine
creases result into a sharper
fold, reduce wrinkles, and im-
prove the fit of the cover around
the bookblock. Courtesy creases
ease opening the front and back
part of the cover. Glue in the
spine holds the bookblock sheets
and cover together.

a motivated choice with ease, i.e., without thinking about and manually trying
out many combinations of configuration parameters.

2.1 Perfect Binding

As an example, we discuss a perfect binder : a finisher that produces books by
binding a stack of sheets with glue and by covering the bookblock in a cover
sheet. A perfect binder typically has two inputs: one for the stack of sheets that
form the book block and one for the cover sheets. Figure 1 shows the perfect
binding process. Figure 2 depicts the components of a perfectly bound book,
viewed from above.

After collecting a stack of sheets, jogging makes sure the stack of sheets
becomes aligned in a corner of the spine. Then, a clamp grasps the bookblock
under pressure. Next, a few millimeters of paper are milled along the spine edge
to prepare the spine for application of glue. Milling makes the paper along the
spine rough, improving adherence of the glue. Then, the spine travels through a
bath of heated glue.

Separately, cover sheets are prepared before being bound around the book-
block. The preparation consists of creasing, i.e., applying pressure on the paper
to ease folding of the paper later. Two creases are applied at the location of
the cover that end up along the edges of the spine of the book. These creases
improve the fit of the cover along the spine of the book block, supporting a
tight fold around the spine. Additionally, two courtesy creases are applied on
the cover. Courtesy creases are applied on the front and back of the resulting

6 J. Denkers et al.

Fig. 3: Components of a perfectly bound book (cover and bookblock) and the
dimensions as how we use them in the CSX specification.

book to support the folding of the cover sheet. Note that courtesy creases are
applied at the opposite side as the spine creases, as they are used for folds in
opposite directions.

After preparing the bookblock and cover, the covering occurs. The bookblock
with glue is positioned in the center of the cover sheet. The cover sheet is folded
around the bookblock and fixed with a clamp. After a delay for the glue to
solidify, the book is released. In practice, the resulting book could be processed
further in a cutting machine to trim along the edges of the book and cover to
result into a nice book.

Perfect binders are flexible in the books they can produce, e.g. in terms of
sheet size or book thickness. Not all flexible manufacturing steps have impact on
the configuration space. For example, jogging and glueing occur automatically
and are configured by the device itself based on measurements. Other settings
such as the milling depth and positioning of the bookblock on the cover are of
interest to the operator and therefore do impact the configuration space; e.g.
more milling might increase the overall production time.

3 CSX

The key idea of CSX is that we model objects such as sheets and stacks and that
we specify symbolic values, i.e. instances, for these objects at several intermediate
steps in the finishing process. By adding constraints and indicating configuration
parameters, a specification defines the configuration space of a device. In CSX
we also describe jobs, i.e., (partial) descriptions of the production process in
terms of the production objects and parameters. We achieve configuration space
exploration by synthesizing configurations from a configuration space for a given
job.

CSX is declarative: a specification in the language describes behavior and con-
figuration spaces of finishers. A CSX specification does not describe algorithms
to compute configurations. Specifications include relations between objects at
locations in the systems. We use the language to model devices as sequences
of components that perform actions. Components instantiate generic, reusable

Configuration Space Exploration for Digital Printing Systems 7

type Sheet {

width: int, [width > 0],

height: int, [height > 0]

}

type Stack {

width: int, [width > 0],

height: int, [height > 0],

thickness: int, [thickness > 0],

volume = width ∗ height ∗ thickness

}

type PerfectBoundBook {

book: Stack,

frontCover: Sheet, backCover: Sheet

}

type CreasedSheet {

sheet: Sheet,

spineFront: Crease,

spineBack: Crease,

courtesyFront: Crease,

courtesyBack: Crease

}

type Crease {

// Offset:

off: int, [off ≥ 0],

// Direction: 0 = down, 1 = up

dir: int, [dir == 0 or dir == 1]

}

Fig. 4: The specification of types for the example perfect binder in CSX. Dimen-
sions are in 0.1mm.

action ToMill(in: Stack, out: Stack) {

parameter millingDepth: int

[millingDepth ≥ 0] [out.width == in.width - millingDepth]

[out.height == in.height] [out.thickness == in.thickness]

}

action ToCrease(in: Sheet, out: CreasedSheet) {

[out.sheet.width == in.width] [out.sheet.height == in.height]

[out.spineFront.dir == 0] [out.spineBack.dir == 0]

[out.courtesyFront.dir == 1] [out.courtesyBack.dir == 1]

// Ensure a minimum distance between creases

parameter minDist: int [minDist > 0] [out.courtesyFront.off ≥ minDist]

[out.spineFront.off ≥ out.courtesyFront.off + minDist]

[out.spineBack.off ≥ out.spineFront.off + minDist]

[out.courtesyBack.off ≥ out.spineBack.off + minDist]

[out.courtesyBack.off ≤ in.width - minDist]

}

action ToCover(cover: CreasedSheet, book: Stack, out: PerfectBoundBook) {

parameter d: int [0 ≤ d and d ≤ cover.sheet.height - book.height]

[out.book.width == book.width] [out.book.height == book.height]

[out.book.thickness == book.thickness]

[out.frontCover.width ∗ 2 == cover.sheet.width - book.thickness]

[out.frontCover.height == cover.sheet.height]

[out.backCover.width ∗ 2 == cover.sheet.width - book.thickness]

[out.backCover.height == cover.sheet.height]

[cover.spineFront.off ∗ 2 == cover.sheet.width - book.thickness]

[cover.spineBack.off ∗ 2 == cover.sheet.width + book.thickness]

parameter courtesyCreaseDist: int

[cover.courtesyFront.off ∗ 2 ==

cover.sheet.width - book.thickness - courtesyCreaseDist ∗ 2]

[cover.courtesyBack.off ∗ 2 ==

cover.sheet.width + book.thickness + courtesyCreaseDist ∗ 2]

}

Fig. 5: The specification of actions for the example perfect binder in CSX. See
Figure 3 for the dimensions used in this specification.

8 J. Denkers et al.

device ExamplePerfectBinder {

location bookIn : Stack location coverIn : Sheet

[1000 ≤ bookIn.height and bookIn.height ≤ 3000]

[2000 ≤ bookIn.width and bookIn.width ≤ 5000]

component toMill = ToMill(bookIn, milledBook) {

[millingDepth ≤ 30] // Max 3mm of milling

[bookIn.thickness < 170] // Max 17mm book thickness

}

location milledBook : Stack

component toCrease = ToCrease(coverIn, creasedCover) {

[minDist ≥ 50] // At least 5 mm between creases

}

location creasedCover : CreasedSheet

component toCover = ToCover(creasedCover, milledBook, out) {}

location out : PerfectBoundBook

}

Fig. 6: The specification of the example perfect binder device in CSX.

actions. Actions establish a relationship between snapshots of objects in the fin-
ishers and thus, transitively, devices define a relation between all snapshots of
the products being produced. Parameters in actions represent a dimension of
configuration that is of interest to operators of the devices. Constraints restrict
instances of types and restrict the behavior of actions and devices, reducing the
configuration space. We will now introduce the language concepts in more de-
tail based on a specification for an example perfect binder such as described in
Section 2.

Defined types are records of properties that model objects at locations in
a device. In Figure 4, we define several types for the example perfect binder.
Dimensions (widths, heights, lengths, distances) are modelled with integers with
a precision of 0.1mm, such that an integer value of 10 stands for a length of
1mm. Types contain defining properties that are of a primitive type (boolean or
integer) or of a defined type such that types can be nested. The nesting of types
may not contain a cycle. Types optionally contain constraints and derived prop-
erties. Constraints restrict the inhabitants of a type. In Figure 4, the constraints
(between square brackets) e.g. restrict sheets to have positive non-zero width
and height. Derived properties are shorthands for expressions over other prop-
erties. Defining properties are required to instantiate a type. Derived properties
are not required to instantiate a type and their values can be derived from other
properties. A derived property expression may refer to the type’s properties and
to other derived properties, but derived properties may not contain cyclic ref-
erences. In Figure 4, Stack has a derived property volume which is defined in
terms of defining properties.

Actions define a relation between locations. In Figure 5, we define several
actions for the example perfect binder. The body of an action definition contains
parameters and constraints that indicate the relations between its parameters.

Configuration Space Exploration for Digital Printing Systems 9

Devices are sequences of components connected through locations. Compo-
nents instantiate actions and can restrict or specify behavior further by adding
constraints. Thus, action behavior is defined seperately from specific instanti-
ations in components. Therefore, actions are generic and potentially reusable
between different device specifications. Limitations of a particular instance of
an action in a device can be specified by adding constraints to the component.
In Figure 6 we define a perfect binder device by instantiating several actions in
components and by connecting them through the locations.

3.1 Configurations and Jobs

A configuration for a device is a value assignment to all locations and parameters.
A valid configuration is a configuration that conforms to the constraints of the
types of the locations, the actions, the components, and the device itself. In
practice, an operator is only interested in the values for the input and output
locations, and not in the intermediate locations.

A job is an expression of intent for which a configuration needs to be found.
Whereas configurations are a complete specification of locations and parameters,
we could see jobs as a partial configuration. For example, a job could define the
input and the output of the finisher. The remaining parts of the configuration,
i.e. the finishing parameters, need to be derived in order to instruct the finisher
to realize the intent of the job. Different usage scenarios of a device lead to
different jobs and approaches to configuration.

3.2 Exploration and Validation

The CSX language supports configuration space exploration, which includes
leveraging exploration at the specification level for validation. Given the specifi-
cation of a device, the language supports describing scenarios for testing devices
by asserting expectations on configuration spaces.

The following test scenario validates that the correct cover dimensions are
chosen for a particular input bookblock and desired output perfectly bound
book:

scenario device ExamplePerfectBinder

config bookIn = Stack(2125,2970,50)

config out = PerfectBoundBook(Stack(2100,2970,50), Sheet(2100,2970), Sheet(2100,2970)) {

[coverIn.width == 2100 + 2100 + 50]

[coverIn.height == 2970]

[toMill.millingDepth == 25]

}

The body of the scenario contains expectations (between square brackets) on
its configuration space. In particular, it validates the cover dimensions that must
be chosen. Since the configuration space could contain multiple configurations,
expectations should only validate common properties of the configuration space
and not on individual configurations.

Scenarios can optionally specify an objective. Objectives indicate a dimension
for optimization of a property of the system, typically expressed using derived

10 J. Denkers et al.

properties. Potentially relevant objectives are e.g. maximizing throughput, min-
imizing energy consumption, or minimizing resource waste. Alternatively, sce-
narios with optimization can characterize the device. For example, based on the
following scenario a scenario can be found for the largest book that the perfect
binder can produce:

scenario device ExamplePerfectBinder

maximize out.book.volume

4 Denotational Semantics

Because of the declarative characteristic of CSX, a translation to SMT con-
straints is natural. In this section, we define the denotational semantics of CSX
that expresses a translation of CSX specifications to SMT constraints. Figure 7
contains the denotational semantics of CSX with the denotation expressed in
MiniZinc [9, 13] definitions. Because we use MiniZinc in the implementation of
CSX (Section 5), we also use it as syntax for the denotation. The MiniZinc
grammar can be found online5.

The intuition behind the translation is that the properties of locations and
the parameters of components are mapped to constraint variables. Additionally,
all CSX-defined constraints translate to corresponding constraints in MiniZinc.
The translation is from the perspective of a device, making use of type and
actions definitions of the CSX specification of which the device is part.

The translation starts with the Device rule, generating MiniZinc definitions
for members of the device: locations, components, and device-level constraints.
The translation is defined under the context of a namespace N , starting with the
empty namespace. The naming scheme for constraint variables follow their cor-
responding hierarchical position in the CSX specification. Since the translation
is for a single device, we do not have to prefix the namespace with the device
name.

A location translates into variables for its properties and into constraints to
restrict its inhabitants (Location). Locations are always of a user-defined type.
Each property of the type translates to variables. If the property is of primitive
type, the translation is a variable of this primitive type (DefProp-PrimType)).
If the property is of a user-defined type, the translation is the translation of its
nested properties in the namespace of the property (DefProp-DefType).

The Comp rule defines the translation for a component, i.e. an action in-
stantiation. The action’s parameters translate into variables in the namespace
of the component (Param). Both the action and the component can define
constraints (EA

i and EC
i , respectively). These constraints are mapped to corre-

sponding MiniZinc constraints. Since the action’s constraints are defined on the
action’s location parameters, and the action gets instantiated with specific loca-
tion arguments, renaming is required. The translation defines R: a mapping from

5 https://www.minizinc.org/doc-2.5.5/en/spec.html?highlight=grammar#

spec-grammar

https://www.minizinc.org/doc-2.5.5/en/spec.html?highlight=grammar#spec-grammar
https://www.minizinc.org/doc-2.5.5/en/spec.html?highlight=grammar#spec-grammar

Configuration Space Exploration for Digital Printing Systems 11

[[S′]]S,N,R = M Specification part S′ of S translates to M in namespace N with
location renaming R

N = [x1, x2, . . . , xn] Namespace N consisting of parts x1 to xn

R = {. . . , Li → L′
i, . . . } Renaming of location names Li to L′

i

name([x1, x2, . . . , xn]) = x1 x2 . . . xn Identifier for namespace [x1, x2, . . . , xn]
Locations L, components C, constraints E, defining properties P , types T , action
parameters PM .

Devices [[device d { L1 . . . Ln, C1 . . . Cm, E1 . . . Eq, . . . }]]S,[],∅ =
n⋃

i=1

[[Li]]S,[],∅ ∪
m⋃
i=1

[[Ci]]S,[],∅ ∪
q⋃

i=1

[[Ei]]S,[],∅ (Device)

Locations type T { P1:T1 . . . Pn:Tn, E1 . . . Em, . . . } ∈ S

[[location L : T]]S,[],∅ =

n⋃
i=1

[[Pi:Ti]]S,[L],∅ ∪
m⋃
i=1

[[Em]]S,[L],∅

(Location)

T ∈ {int, bool}
[[P:T]]S,N,∅ = var T : name(N ++[P]) ;

(DefProp-PrimType)

type T { P1:T1 . . . Pn:Tn, E1 . . . Em, . . . } ∈ S

[[P:T]]S,N,∅ =

n⋃
i=1

[[Pn:Tn]]S,N++[P],∅ ∪
m⋃
i=1

[[Em]]S,N++[P],∅

(DefProp-DefType)

Components action A(L1:T
L
1 . . . Ln:T

L
n)

{parameter PM1 : TP
1 . . . parameter PMm : TP

m , EA
1 . . . EA

q , . . . } ∈ S
R = {L1 → L′

1, . . . , Ln → L′
r}

[[component C = A (L′
1 . . . L

′
r) { EC

1 . . . EC
s }]]S,[],∅ =

m⋃
i=1

[[parameter PMm : TP
m]]S,[C],∅ ∪

q⋃
i=1

[[EA
i]]S,[C],R ∪

s⋃
i=1

[[EC
s]]S,[C],∅

(Comp)

T ∈ {int, bool}
[[parameter PM:T]]S,N,∅ = var T:name(N++[PM]) ;

(Param)

Constraints & References
[[[e]]]S,N,R = constraint [[e]]S,N,R; (Constraint)

x is a defining property or parameter

[[x]]S,N,R = name(N++[x])
(DefProp-Ref/Param-Ref)

x is a location x → x′ /∈ R

[[x]]S,N,R = name(N++[x])
(Location-Ref)

x is a location x → x′ ∈ R

[[x]]S,N,R = name(N++[x′])
(ActionLocation-Ref)

x is a derived property with body e

[[x]]S,N,R = [[e]]S,N,R

(DerProp-Ref)

[[e.x]]S,N,R = [[e]]S,N,R + x (Proj)

Fig. 7: Denotational semantics of CSX, expressed in MiniZinc. We have omitted
the rules for literals and arithmetic for brevity; they map one-to-one. ++ is
namespace concatenation. + is identifier concatenation.

12 J. Denkers et al.

the location’s parameter names to the component’s location argument names.
We only use the renaming for translating references to locations from constraints
defined in the action definition.

The expressions that are used to define constraints, except references and
projection, map mostly one-to-one to their MiniZinc counterparts. For references
and projection, we consider several cases. A reference to property or parameter
(DefProp-Ref/Param-Ref) translates to a name for x in the context. For
example, a reference of x in namespace [a, b] will result in the denotation into
a reference to name a b x. For projection (Proj), we recursively translate the
base expressions into a name and concetenate the projected name.

For a location reference, we consider two cases. Location references from out-
side actions translate similarly as regular references (Location-Ref). Location
references within actions refer to location parameters, while the actions are in-
stantiated with location arguments from a device. Therefore, for such location
references, we replace the location parameter name by the argument name for
which it is instantiated (ActionLocation-Ref).

Types, actions, and devices can have derived properties. These only translate
into constraints if they are referenced, i.e. by replacing the reference with the
body of the derived property and by propagating the namespace and location
renaming (DerProp-Ref). For the definition of derived properties, no transla-
tion takes place. The definition of derived properties are ignored by . . . in the
specification.

Solutions found for the MiniZinc denotations are related to valid configura-
tions for CSX specifications, and we can translate such solutions back to CSX
specifations. The correspondence between location properties and component
parameters in CSX and MiniZinc is defined by the naming scheme used in the
denotation, and mapping them back is thus straightforward.

5 Implementation

In this section we describe how we obtain a usable integrated development envi-
ronment (IDE) for CSX by integrating an implementation of the language with
configuration space exploration and interactive validation. The IDE contains
components for parsing, syntax highlighting, code completion, name binding
and type checking, and interactive reporting of static semantics violations. The
CSX validation constructs are interpreted interactively and invalid assertions are
marked on the specification.

We have implemented the CSX language using Spoofax [7], a language work-
bench [5] that provides infrastructure for designing, implementing, and deploying
DSLs by means of declarative specification of language aspects using meta-DSLs.
We define the syntax of CSX in SDF3 [11], a meta-language for multi-purpose
syntax definition. From the CSX syntax definition, SDF3 automatically derives
a parser, pretty printer, syntax highlighting, and syntactic code completion. The
parser yields abstract syntax trees (ASTs) on which we first apply desugaring.
Desugaring e.g. involves propagating the properties of a scenario to the tests

Configuration Space Exploration for Digital Printing Systems 13

within that scenario. The desugared ASTs are input to the static analysis and
further transformations. We specify desugaring and other transformations using
the Stratego [2] meta-language. Based on the language specification, Spoofax
automatically generates an IDE for the language.

We define the CSX static semantics in NaBL2 [1, 10]. NaBL2 is a meta-
language for specifying static semantics for languages from which name binding
and type checking is automatically derived. Static semantic violations are re-
ported interactively in the IDE. For CSX, this could be invalid composition of
components in a device or incorrect type checking of constraint expressions. In-
teractive reporting of errors assists users of the language during specification
writing.

In addition to the automated derivation of name binding and type checking,
we implement analysis for other well-formedness conditions. If well-formedness
checking succeeds, the result is a desugared AST that is annotated with name
binding and typing information. The name binding information is used to check
non-cyclic references of defining properties and derived properties, i.e., by fol-
lowing references of properties and checking whether those do not contain cycles.

To realize configuration space exploration, we implement a translation of
CSX specifications to SMT constraints for which we can use existing solving
techniques. In particular, we translate CSX to the MiniZinc constraint modelling
language [9,13]. MiniZinc is solver-independent, which enables us to use multiple
solvers as a backend for CSX. In particular, we use solvers with the theories of
linear arithmetic and optimization modulo theories.

We implement the translation from CSX to MiniZinc as an AST-to-AST
transformation using Stratego. In addition to the syntax definition of CSX, we
have also defined the syntax of MiniZinc in Spoofax with SDF36. The syntax
definitions of both languages generate an AST schema on which we define the
Stratego transformation. After transforming a parsed CSX AST to a MiniZinc
AST, the MiniZinc pretty printer generates concrete MiniZinc syntax from the
AST.

The translation uses information from name binding and type analysis. This
is necessary for references and projection expressions. By using name binding and
typing information, the distinction between references to properties, parameters,
locations, and action locations can be made to generate the correct reference on
the MiniZinc level.

We integrate solving of constraint models by calling MiniZinc from Stratego
through integration with Java. Stratego provides an API for integrating trans-
formations with custom Java code. We implement such a custom transformation
and use a Java program to call the MiniZinc command-line interface. The Java
program is called with as input the generated MiniZinc model. The Java program
parses the textual solving result that is returned by MiniZinc and returns it as
a list of variable binding. In the Stratego code, for the interpretation of config-
urations, we evaluate expressions and lookup values for references by following
the same naming schema as in the translation semantics. After replacing the

6 https://github.com/metaborgcube/metaborg-minizinc

https://github.com/metaborgcube/metaborg-minizinc

14 J. Denkers et al.

referenced properties and parameters by their values on the constraint level, the
evaluation of expressions remains regular expression evaluation. As a result, we
have a configuration space exploration pipeline from interpreting specifications
using constraint solving with the solution mapped back to the specification level
as a configuration.

The configuration space exploration pipeline serves two purposes in the IDE:
test evaluation and inhabitance checking. For test evaluation, the configuration
space of the device that is selected in the scenario is translated to MiniZinc and
passed as an input to the pipeline. Additional constraints are added to reduce
the configuration space, e.g. to configure the input or output location values, or
parameters as specified in the scenario. If the scenario contains an objective, the
objective is also mapped to MiniZinc and provided as input to the pipeline. The
configuration that is returned by the pipeline is used to evaluate test expecta-
tions. This evaluation is done by a basic interpreter that evaluates expressions
which should result into true. The expressions can contain references to param-
eters and location properties, and based on the name binding information the
references are mapped to the corresponding value from the configuration. For
failed test expectations we report an error which is marked with red underlining
on the original specification using origin tracking [4].

The evaluation of tests and reporting of results is triggered in the IDE on file
changes, resulting into an interactive experience. Additionally, the experience
is improved by providing information while hovering over references to loca-
tions, properties, and parameters in test expectations. The same interpretation
approach as for test expectations is used to evaluate the expression being hov-
ered over and the value is presented in a popup, giving the user insight in the
configuration that is found.

Similar to the treatment of scenarios, inhabitance checks are triggered on
file changes. The pipeline is triggered for each type, action, and device using the
translations semantics. For inhabitance checking of a type, we translate a random
instance of that type to SMT. For an action, we instantiate it with instances for
all its parameters. Instead of finding a configuration for it, for inhabitance check-
ing we only check satisfiability on the constraint level. If the pipeline concludes
insatisfiabilty, we report an error on the corresponding construct to indcate that
the construct is not inhabited.

To prevent unnecessary checking of inhabitance and evaluation of tests, we
use simple caching of analysis results with ASTs of the subjects as the caching
key. If a type definition AST has not changed, it does not have to be checked
again for inhabitance. If a scenario has not changed, it does not have to be
evaluated again.

While we have described the realization of a programming environment for
CSX specifications, the eventual goal of CSX is to deploy control software to
finishers. Figure 8 gives an overview of how configuration space exploration with
CSX would with fit in a realistic setting. The configuration space exploration
component would be integrated with a software component, implemented us-

Configuration Space Exploration for Digital Printing Systems 15

CSX
IDE

CSX
specification

Specification
engineer

write

GPL
implementation

generate
automatically

SMT modeltranslate Solution

map

provide parameters

Job

Operator

request

map

solve

Finisher

control

Fig. 8: An architecture for applying CSX in control software. GPL stands for
general purpose programming language, such as C# or Java.

ing a general-purpose language, that provides a UI and that instructs low-level
embedded software components.

6 Evaluation

We evaluate CSX by modelling two realistic cases, a perfect binder and a book-
let maker, and by benchmarking the configuration space exploration for a sce-
nario with and without optimization. The perfect binder case corresponds to
the example of Section 3. In the scenario without optimization, CSX derives the
required input cover given an input bookblock and a desired output. In the sce-
nario with optimization, CSX finds a configuraton for the smallest size book the
finisher can produce. The bookletmaker case concerns a finisher that performs
rotating, stitching, folding, and trimming in order to produce a booklet from
a stack of sheets. In the scenario without optimization, CSX finds the action
parameters given an input and output. In the scenario with optimization, CSX
finds a configuration that minimizes paper waste given only the desired output.
Both specifications are based on realistic cases present at Canon Production
Printing B.V.

By writing scenarios in the language, we can interactively validate the speci-
fication within the IDE. Initially loading a specification can take a few seconds:
a specification typically consists of multiple type definitions, action definitions,
a device definition, and several scenarios. For the type, action, and device defi-
nitions, inhabitance checking is triggered, which for each check leads to an invo-
cation of the SMT solver. Additionally, for each scenario the solver is invoked.
The caching of invocations of the solver decreases response times after a change,
making the IDE usable in an interactive way. For example, inhabitance for a
type will not be re-checked if only a test scenario changes.

We set up a benchmark which makes use of Spoofax core, i.e. the core of
Spoofax which enables integration of language components with Java, such that
we can only execute the relevant part of the pipeline in the benchmark. For

16 J. Denkers et al.

find optimize

bookletmaker

tim
e

(m
s)

0
10

0
20

0
30

0
40

0
50

0
find optimize

perfectbinder

translation solving

Fig. 9: The benchmarking results on a perfect binder and a booklet maker for a
scenario of finding a configuration and for finding an optimal configuration.

benchmarking, we use the JMH framework7. We executed the benchmarks on a
server with two 32-core processors with a base frequency of 2.3GHz and 256GB
RAM, running Ubuntu 20.04, using OpenJDK version 1.8.0 275-b01. From ex-
perimentation it appeared that the ORTools solver8 had best performance, and
therefore we use this solver in the benchmarks. We use MiniZinc version 2.5.5
and ORTools version 9.0. We measure 10 iterations and average the result. In
the benchmarks, we separately measure the translation time and solving time.
We leave out parsing, name binding and type checking time, as they are minimal
compared to translation and solving time.

Figure 9 shows the benchmarking results. For each scenario, solving time is in
the order of 100’s milliseconds. We consider sub-second performance as practical
and therefore conclude that CSX’s performance for the two cases we consider
has practical performance for finding (optimal) configurations.

For specifying these devices in CSX, we have chosen a model of objects
(sheets, stacks) with a certain level of detail. The bookletmaker and perfect
binding cases translated in the SMT level into 32 and 29 variables and 56 and
58 constraints, respectively. Although we achieve useful configuration space ex-
ploration for these scenarios, it could be that in practice more detail has to be
added to the model, which could also influence solving performance. By deploy-
ing CSX at Canon Production Printing B.V., we aim to further evaluate whether
CSX is adequate in modeling and integrating the full product line of finishers
available and evaluate its usability for domain experts.

7 https://openjdk.java.net/projects/code-tools/jmh/
8 https://developers.google.com/optimization

https://openjdk.java.net/projects/code-tools/jmh/
https://developers.google.com/optimization

Configuration Space Exploration for Digital Printing Systems 17

7 Related Work

We discuss related work that uses constraint solving in the backend of high-level
specification or domain-specific languages for realizing static analyses, validation,
verification, consistency checking or synthesis.

Keshishzadeh et al. use SMT solving for validation of domain-specific prop-
erties to achieve fault detection early in the software development cycle. In par-
ticular, they develop a DSL with industrial application in a case on collision
prevention for medical imaging equipment [8]. The approach includes delta de-
bugging, i.e., an approach to trace causes of property violations and report them
back to the specification in a systematic way. The work is related to CSX because
it also uses SMT solving in the backend of a domain-specific language.

Voelter et al. use SMT solving with the Z3 solver for advanced error checking
and verification in the KernelF language [16], a reusable functional language for
the development of DSLs. Voelter et al. apply SMT solving succesfully in a DSL
on a case study for the domain of payroll calculations [17], i.e. for statically
checking completeness and overlap of domain-specific switch-like expressions.
Similarly to CSX, in this work SMT solving is used in the backed of a domain-
specific language for realizing static analyses. While the application of SMT was
successful in the domain-specific case, the authors report difficulties in applying
SMT solving generically in KernelF. The authors plan to develop a successor to
KernelF that is realized with SMT solving completely.

Constraint solving in feature models solves a different problem than CSX.
Feature models describe systems as compatible compositions of features or soft-
ware components; finding/checking feature compositions occurs “statically” from
which a software artifact can be derived. CSX specifications express physical
properties of finishers; finding configurations occurs “dynamically” (at run time)
to find instances of the manufacturing process. This goes all the way down to the
“semantic” level, e.g. by using sheet dimensions and the location of fold edges
instead of only an abstract feature that enumerates the kinds of folds a device
can do. Feature modelling is useful in the finishing context e.g. to derive which
devices are necessary for a production route for booklets. In CSX, we assume
the production route is known.

Relational model finders are related to CSX in the sense that they map high-
level specifications to constraints and map solutions back to the specification
level. Alloy [6] is a specification language that applies finite model finding to
check formal specifications of software. Alloy is backed by KodKod [15], a re-
lational model finder for problems expressed using first order logic, relational
algebra, and transitive closures. In contrast to CSX, KodKod does not offer sup-
port for reasoning over data nor for optimization objectives. In CSX, the nature
of specifications is not relational: manufacturing paths are fixed and we consider
snapshots of the product being manufactured at different steps in the process.

AlleAlle [12] adds support for first-class data attributes and optimization to
relational model finding. Similar to KodKod, Stoel et al. consider AlleAlle as
an intermediate language. AlleAlle and CSX are related in the sense that both
approaches take the data of problems into account and use SMT solving for

18 J. Denkers et al.

model finding. While AlleAlle is an intermediate language generally targeting
relational problems, CSX is a more domain-specific language in which relations
are not a first class concept. Similar to CSX, for AlleAlle it is unclear yet how
to map reasons for unsatisfiability that are found in the constraint level back to
the specification level.

Rosette [14] is a solver-aided programming language that supports verifica-
tion, debugging, and synthesis. Rosette extends the Racket language with sup-
port for symbolic values that stand for e.g. an arbitrary integer value. Such values
translate to a constraint variable in the runtime. Rosette realizes verification and
synthesis in the runtime by integrating its symbolic virtual machine with SMT
solvers. Whereas in Rosette selected variables are replaced by symbolic values, in
CSX all variables in the specification translate to constraint variables. Rosette is
a general language tailored to program verification and synthesis whereas CSX
is focused on a particular domain, i.e. manufacturing systems, altough we have
only experimented with CSX in the digital printing domain.

Muli [3] is a constraint-logic object oriented language that integrates con-
straint solving with object oriented programming in the Java programming lan-
guage. Muli extends Java’s syntax with the free keyword for indicating symbolic
values that translate to constraint variables in the runtime. Fragments of pro-
grams that are considered as search regions are executed non-deterministically,
searching for concrete values for the constraint variables. The Muli runtime is
based on a symbolic Java virtual machine that integrates constraint solvers. Muli
only supports primitive types as constraint variables. Support for arrays and ob-
jects as constraint variables is listed as future work. CSX does support search on
non-primitive types such as user-defined record types. Similar to how support
for arrays is desired for Muli, support for lists is desired for CSX, but that is
future work. Muli differs from CSX in the sense that Muli preserves the Java
syntax and, by doing so, serves as a general purpose programming language,
whereas CSX introduces a new domain-specific language. In contrast to Muli,
CSX supports optimization.

8 Conclusions

We have presented CSX, a language and method for high-level declarative spec-
ification of finishers and their configuration spaces. We have developed a trans-
lation of CSX to SMT constraints which enables us to use constraint solving to
find (optimal) configurations for finishers. We have presented an implementation
of the CSX programming environment, including support for well-formedness
checking, inhabitance checking, and interactive configuration space exploration.
Our benchmarks show that, on two realistic cases, CSX has practical sub-second
performance in finding configurations for scenarios with and without optimiza-
tion.

Future work. Our focus has been on finding a domain abstraction for con-
figuration space exploration applied in the digital printing domain for finishers.
While we have designed the language in collaboration with control software en-

Configuration Space Exploration for Digital Printing Systems 19

gineers, we plan to further evaluate CSX by deploying it at Canon Production
Printing B.V. By doing so, we can further evaluate the adequacy of CSX in
covering the full product line of finishers. Additionally, we plan to evaluate the
language in terms of usability for control software engineers and in terms of
validatability by mechanical engineers.

To improve the usability of the environments for configuration space explo-
ration for operators, it would be useful to characterize the reduced configuration
spaces for given jobs. In particular, when multi-objective optimization is relevant
for ojectives such as maximing throughput and minimizing waste, it would be
useful if CSX could indicate the tradeoff between these objectives.

Acknowledgments

We thank the reviewers for their feedback. This research was partially supported
by a grant from the Top Consortia for Knowledge and Innovation (TKIs) of the
Dutch Ministry of Economic Affairs and by Canon Production Printing. We
thank Bas Hermus for providing a 3D drawing of perfect binding. This work is
related to the European patent application EP3855304 A1 which is published
on 28 July 2021.

References

1. van Antwerpen, H., Néron, P., Tolmach, A.P., Visser, E., Wachsmuth, G.:
A constraint language for static semantic analysis based on scope graphs.
In: Erwig, M., Rompf, T. (eds.) Proceedings of the 2016 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, PEPM 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016. pp. 49–60. ACM (2016).
https://doi.org/10.1145/2847538.2847543

2. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A
language and toolset for program transformation. Science of Computer Program-
ming 72(1-2), 52–70 (2008). https://doi.org/10.1016/j.scico.2007.11.003

3. Dageförde, J.C., Kuchen, H.: A compiler and virtual machine for constraint-logic
object-oriented programming with muli. Journal of Computer Languages 53, 63–78
(2019). https://doi.org/10.1016/j.cola.2019.05.001

4. van Deursen, A., Klint, P., Tip, F.: Origin tracking. Journal of Symbolic Compu-
tation 15(5/6), 523–545 (1993)

5. Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman, R., Cook, W.R.,
Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., Konat, G., Molina, P.J., Palat-
nik, M., Pohjonen, R., Schindler, E., Schindler, K., Solmi, R., Vergu, V.A.,
Visser, E., van der Vlist, K., Wachsmuth, G., van der Woning, J.: Evalu-
ating and comparing language workbenches: Existing results and benchmarks
for the future. Computer Languages, Systems & Structures 44, 24–47 (2015).
https://doi.org/10.1016/j.cl.2015.08.007

6. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans-
actions on Software Engineering Methodology 11(2), 256–290 (2002).
https://doi.org/10.1145/505145.505149

https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1016/j.cola.2019.05.001
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1145/505145.505149

20 J. Denkers et al.

7. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.)
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010. pp. 444–463.
ACM, Reno/Tahoe, Nevada (2010). https://doi.org/10.1145/1869459.1869497

8. Keshishzadeh, S., Mooij, A.J., Mousavi, M.R.: Early fault detection in dsls us-
ing smt solving and automated debugging. In: Hierons, R.M., Merayo, M.G.,
Bravetti, M. (eds.) Software Engineering and Formal Methods - 11th Interna-
tional Conference, SEFM 2013, Madrid, Spain, September 25-27, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 8137, pp. 182–196. Springer (2013).
https://doi.org/10.1007/978-3-642-40561-7 13

9. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Miniz-
inc: Towards a standard cp modelling language. In: Bessière, C. (ed.) Principles
and Practice of Constraint Programming - CP 2007, 13th International Con-
ference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4741, pp. 529–543. Springer (2007).
https://doi.org/10.1007/978-3-540-74970-7 38

10. Néron, P., Tolmach, A.P., Visser, E., Wachsmuth, G.: A theory of name resolution.
In: Vitek, J. (ed.) Programming Languages and Systems - 24th European Sympo-
sium on Programming, ESOP 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings. Lecture Notes in Computer Science, vol. 9032, pp. 205–231. Springer
(2015). https://doi.org/10.1007/978-3-662-46669-8 9

11. de Souza Amorim, L.E., Visser, E.: Multi-purpose syntax definition with SDF3. In:
de Boer, F.S., Cerone, A. (eds.) Software Engineering and Formal Methods - 18th
International Conference, SEFM 2020, Amsterdam, The Netherlands, September
14-18, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12310, pp. 1–23.
Springer (2020). https://doi.org/10.1007/978-3-030-58768-0 1

12. Stoel, J., van der Storm, T., Vinju, J.J.: Allealle: bounded relational model finding
with unbounded data. In: Masuhara, H., 0001, T.P. (eds.) Proceedings of the 2019
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2019, Athens, Greece, October
23-24, 2019. pp. 46–61. ACM (2019). https://doi.org/10.1145/3359591.3359726

13. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The minizinc challenge
2008-2013. AI Magazine 35(2), 55–60 (2014)

14. Torlak, E., Bod́ık, R.: Growing solver-aided languages with rosette. In: Hosk-
ing, A.L., Eugster, P.T., Hirschfeld, R. (eds.) ACM Symposium on New Ideas
in Programming and Reflections on Software, Onward! 2013, part of SPLASH
’13, Indianapolis, IN, USA, October 26-31, 2013. pp. 135–152. ACM (2013).
https://doi.org/10.1145/2509578.2509586

15. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 13th International Conference, TACAS 2007, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Por-
tugal, March 24 - April 1, 2007, Proceedi. Lecture Notes in Computer Science,
vol. 4424, pp. 632–647. Springer (2007). https://doi.org/10.1007/978-3-540-71209-
1 49

16. Voelter, M.: The design, evolution, and use of kernelf - an extensible and em-
beddable functional language. In: Rensink, A., Cuadrado, J.S. (eds.) Theory
and Practice of Model Transformation - 11th International Conference, ICMT

https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1007/978-3-642-40561-7_13
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-030-58768-0_1
https://doi.org/10.1145/3359591.3359726
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49

Configuration Space Exploration for Digital Printing Systems 21

2018, Held as Part of STAF 2018, Toulouse, France, June 25-26, 2018, Proceed-
ings. Lecture Notes in Computer Science, vol. 10888, pp. 3–55. Springer (2018).
https://doi.org/10.1007/978-3-319-93317-7 1

17. Voelter, M., Koscejev, S., Riedel, M., Deitsch, A., Hinkelmann, A.: A domain-
specific language for payroll calculations: a case study at datev (2020)

A Declarative Semantics

Specifications in CSX describe configuration spaces of devices. For a device
specified in CSX, a configuration assigns values to the locations and parameters
of the device. A valid configuration is a configuration that satisfies all constraints
of the device. We describe the satisfiability relation of CSX by defining the
declarative semantics of CSX in Figure 10. The rules follow the same pattern
as the rules of the denotational semantics in Figure 7. The configuration space
of a device corresponds to the set of all valid configurations that satisfy the
declarative semantics.

B Inhabitance

The CSX syntax allows to define types, actions, and devices without inhabitants.
For example, the following type is not inhabited:

type T { i: int [i != i] }

Since there are no valid configurations for such definitions, we want to detect
and report uninhabited definitions. Specifications with definitions that are not
inhabited, i.e., there are no models for their instantations, are not useful in
practice. Therefore, we restrict CSX such that types, actions, and devices must
be inhabited. Below, we define inhabitance in terms of the satisfiablity relation
of Figure 10.

A type T is inhabited if there exists a model M that is a value for a arbitrary
location L of type T and that satisfies the specification of the type:

arbitrary name L

∃M |=∅,∅ location L : T

An action A is inhabited if there exists a model M that satisfies an instance of
the action, i.e., a valuation its for parameters and that satisfies the specification
of the action:

https://doi.org/10.1007/978-3-319-93317-7_1

22 J. Denkers et al.

M |=S,R S′ M models specification part S′ of S with location renaming R
M |=S,R S′ ⇒ v M models specification part S′ of S and evaluates to value v

with location renaming R
R = {. . . , Li → L′

i, . . . } Renaming of location names Li to L′
i

D(T) Domain of type T . D(bool) = {>,⊥}, D(int) = Z.
Locations L, components C, constraints E, defining properties P , types T , action
parameters PM .

Devices

M |=S,∅ L1 . . . Ln M |=S,∅ C1 . . . Cm M |=S,∅ E1 . . . Eq

M |=S,∅ device d { L1 . . . Ln, C1 . . . Cm, E1 . . . Eq, . . . }
(Device)

Locations

type T { P1:T1 . . . Pn:Tn, E1 . . . Em, . . . } ∈ S
M.L = v v |=S,∅ P1:T1 . . . Pn:Tn v |=S,∅ E1 . . . Em

M |=S,∅ location L : T
(Location)

T ∈ {int, bool} M.P ∈ D(T)

M |=S,∅ P : T
(DefProp-PrimType)

type T { P1:T1 . . . Pn:Tn, E1 . . . Em, . . . } ∈ S
M.P = v v |=S,∅ P1:T1 . . . Pn:Tn v |=S,∅ E1 . . . Em

M |=S,∅ P : T
(DefProp-DefType)

Components

action A(L1:T
L
1 . . . Ln:T

L
n)

{parameter PM1 : TP
1 . . . parameter PMm : TP

m , EA
1 . . . EA

q , . . . } ∈ S
R = {L1 → L′

1, . . . , Ln → L′
r} M.C = v

v |=S,∅ parameter PM1 : TP
1 . . . parameter PMm : TP

m

v |=S,R EA
1 . . . EA

q v |=S,∅ EC
1 . . . EC

s

M |=S,∅ component C = A (L′
1 . . . L

′
r) { EC

1 . . . EC
s }

(Comp)

T ∈ {int, bool} M.PM ∈ D(T)

M |=S,∅ parameter PM : T
(Param)

Fig. 10: Declarative semantics of CSX (continued on next page). We have omitted
the rules for literals and arithmetic for brevity; they map one-to-one. We define
models M recursively as (M,x = v) in which value v binds to x and with the
empty model ∅ as base case. We define model projection as (M,x = v).x = v
and (M,x = v).y = M.y if x 6= y. e ⇒ v indicates that syntactic expression e
evaluates to value v. Values are booleans (> and ⊥), integers, and models.

Configuration Space Exploration for Digital Printing Systems 23

Constraints & References

M |=S,R e ⇒ v v = >
M |=S,R [e]

(Constraint)

x is a defining property or parameter M.x = v

M |=S,R x ⇒ v
(DefProp-Ref/Param-Ref)

x is a location x → x′ /∈ R M.x = v

M |=S,R x ⇒ v
(Location-Ref)

x is a location x → x′ ∈ R M.x′ = v

M |=S,R x ⇒ v
(ActionLocation-Ref)

x is a derived property with body e M |=S,R e ⇒ v

M |=S,R x ⇒ v
(DerProp-Ref)

M |=S,R e ⇒ v1 v1.x = v2

M |=S,R e.x ⇒ v2
(Proj)

Fig. 10: Declarative semantics of CSX (continued).

arbitrary name L

[[location L : T]]S,[],∅
(Location-Inhab)

action A(L1:T
L
1 . . . Ln:T

L
n) {

parameter PM1 : TP
1 . . . parameter PMm : TP

m ,

EA
1 . . . EA

q , . . . } ∈ S R = {L1 → L1, . . . , Ln → Ln}
arbitrary name C

n⋃
i=1

[[location Li : TL
i]]S,[],∅∪

m⋃
i=1

[[parameter PMm : TP
m]]S,[C],∅∪

q⋃
i=1

[[EA
i]]S,[C],R

(Action-Inhab)

Fig. 11: Denotational semantics for inhabitance checking, building on the rules
of Figure 7.

24 J. Denkers et al.

M |=∅,∅ location L1 : TL
1 . . . location Tn : TL

n

R = {L1 → L1, . . . , Ln → Ln}
M |=∅,∅ parameter PM1 : TP

1 . . . parameter PMm : TP
m

M |=∅,R EA
1 . . . EA

q

∃M |=∅,∅ action A(L1:T
L
1 . . . Ln:T

L
n)

{parameter PM1 : TP
1 . . . parameter PMm : TP

m , EA
1 . . . EA

q , . . . }

A device d is inhabited if there exists a model M that satisfies the device:
∃M |=S,∅ device d { ... }.

Inhabitance corresponds to satisfiability in the SMT domain. Unsatisfiability
of an SMT model for a type, action, or device indicates the definition is not
inhabited. For a device, it means the configuration space is empty. The deno-
tational semantics in Figure 7 defines a translation from the perspective of a
device. We build on this translation to define rules for checking inhabitance of
types and actions in Figure 11.

For inhabitance checking of types and actions, we can reuse the rules but have
to provide an artifical context for the translation. For example, for inhabitance
checking of type T , we check satisfiability of the SMT model for an instance of
the type in a arbitrary location (Location-Inhab). The type is inhabited if the
SMT model for an instance of the type in an arbitrary location is satisfiable. For
inhabitance checking of actions, we take a similar approach (Action-Inhab).
Instead of taking a single arbitrary location, we instantiate locations for all
location paramaters, and use them to instantiate the action A for an arbitrary
component C.

	 Configuration Space Explorationfor Digital Printing Systems

