
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01185-x

REGULAR PAPER

OIL: an industrial case study in language engineering with Spoofax

Olav Bunte1 · Jasper Denkers2 · Louis C. M. van Gool3 · Jurgen J. Vinju1,4 · Eelco Visser2 · Tim A. C. Willemse1 ·
Andy Zaidman2

Received: 15 September 2023 / Revised: 26 March 2024 / Accepted: 8 May 2024
© The Author(s) 2024

Abstract
Domain-specific languages (DSLs) promise to improve the software engineering process, e.g., by reducing software devel-
opment and maintenance effort and by improving communication, and are therefore seeing increased use in industry. To
support the creation and deployment of DSLs, language workbenches have been developed. However, little is published about
the actual added value of a language workbench in an industrial setting, compared to not using a language workbench. In
this paper, we evaluate the productivity of using the Spoofax language workbench by comparing two implementations of
an industrial DSL, one in Spoofax and one in Python, that already existed before the evaluation. The subject is the Open
Interaction Language (OIL): a complex DSL for implementing control software with requirements imposed by its industrial
context at Canon Production Printing. Our findings indicate that it is more productive to implement OIL using Spoofax
compared to using Python, especially if editor services are desired. Although Spoofax was sufficient to implement OIL, we
find that Spoofax should especially improve on practical aspects to increase its adoptability in industry.

Keywords Language workbench · Language engineering · Case study

Communicated by Juan de Lara.

Olav Bunte and Jasper Denkers have contributed equally to this work.

B Olav Bunte
o.bunte@tue.nl

B Jasper Denkers
j.denkers@tudelft.nl

Louis C. M. van Gool
louis.vangool@cpp.canon

Jurgen J. Vinju
jurgen.vinju@cwi.nl

Eelco Visser
e.visser@tudelft.nl

Tim A. C. Willemse
t.a.c.willemse@tue.nl

Andy Zaidman
a.e.zaidman@tudelft.nl

1 Eindhoven University of Technology, Eindhoven, The
Netherlands

2 Delft University of Technology, Delft, The Netherlands

3 Canon Production Printing, Venlo, The Netherlands

4 CWI, Amsterdam, The Netherlands

1 Introduction

Every piece of software is written in one or more soft-
ware languages. The most common software languages
are general-purpose languages (GPLs), such as C++, Java,
and Python. For specific purposes, it can be beneficial to
design a tailored language. Such a language is called a
domain-specific language [1] (DSL). Compared to GPLs,
DSLs promise to improve the software engineering process,
e.g., by reducing development and maintenance effort when
implementing (domain-specific) software. They are also con-
sidered to be more suitable for communication between
software engineers and domain experts [2].

To support the creation and deployment of DSLs, lan-
guage workbenches have been developed [3–5]. Language
workbenches are specifically designed for the development
of aDSL. This includes theDSL’s syntax, fromwhich parsers
can be derived automatically, as well as its semantics, e.g.,
by means of a translation to other languages. Language
workbenches typically also generate IDEs for the DSLs
implemented in them. Examples of language workbenches
are MPS [6], Xtext [7], Rascal [8], and Spoofax [9].

Although there already is ample literature on the under-
lying theory of language workbenches (e.g., [5, 10]), little is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01185-x&domain=pdf
http://orcid.org/0000-0003-3014-8324

O. Bunte et al.

documented about the actual added value of language work-
benches compared to not using language workbenches in
an industrial setting when designing and engineering DSLs.
This is relevant for two main reasons. On the one hand
there is opportunity: there exist DSL implementations in
industry which have not been developed with the poten-
tial benefit of language workbenches. On the other hand,
there are still unknowns: most language workbenches spawn
from academic environments which can have different views
on software engineering effectiveness compared to a pure
industrial setting. How relevant are the benefits of language
workbenches in an industrial setting?

One of the first works that evaluates the added value of a
specific language workbench in an industrial context is the
work by Van den Brand et al. [11]. In this work, the authors
present some experiences with using ASF+SDF for railway
andfinancial domains.Amore recent and extensive industrial
case study is described in the work of Voelter et al. [12]. The
authors evaluate the MPS language workbench with as case
thembeddr collection of languages under non-trivial require-
ments. The work by Voelter et al. resulted in meaningful
lessons learned for the particular case study froman industrial
perspective. Still, the authors call for more studies on lan-
guage workbench evaluation to expand our knowledge of the
usefulness of language workbenches for language engineer-
ing in general. This will help industrial language engineers
decide when and how to use language workbenches.

We present such an evaluation of the Spoofax language
workbench in an industrial setting. In the original work
on Spoofax [9], the authors claim that Spoofax “enables
efficient, agile development of software languages with
state-of-the-art IDE support based on concise, declarative
specifications”. From this it can be derived that it should be
more productive to implement a DSL with Spoofax com-
pared to when not using a language workbench. Although
it has been demonstrated that Spoofax is able to deliver on
its original promises for non-industrial greenfield situations,
e.g., in the area of web programming [13, 14], or declarative
data modeling [15, 16], it is unclear to what extent the orig-
inal claims of Spoofax still hold for our industrial case. This
leads to the following research question:

RQ: How does the productivity of implementing an
industrial language in Spoofax compare to the produc-
tivity when using a GPL and available libraries?

Productivity is about the amount of effort needed to imple-
ment some functionality. As a proxy for effort we measure
code volume, as it is the only information available to us in
this study that relates to effort and can be measured objec-
tively.

The industrial case with which we evaluate Spoofax is
the Open Interaction Language (OIL), a textual language for

modeling control software, developed at Canon Production
Printing.1 Before the implementation of OIL in Spoofax was
created, a design ofOIL already existed based onXML, along
with an implementation in Python. This makes OIL a typical
industrial case, in the sense that the new implementationmust
fit into an existing software ecosystemwhich is used to create
commercial products.

The industrial context requires a number of features for
the implementation of OIL. In particular, with the migra-
tion to Spoofax, the original XML syntax should be sup-
ported alongside a new more user-friendly syntax. OIL’s
syntax allows the user to leave out boilerplate informa-
tion, which the implementation needs to make explicit. The
well-formedness, name binding, and typing of an OIL spec-
ification should be statically checked and errors should be
reported to the user. OIL specifications depend on modules
and interfaces defined in another language called Interface
Definition Language (IDL). Finally, the Spoofax implemen-
tation of OIL should be able to generate code, both for the
execution and for the verification of OIL specifications.

Based on the aforementioned requirements and earlier
non-industrial evaluations of Spoofax, in this paper we eval-
uate how well Spoofax can cope with the complexity and
scale of the industrial OIL case study. The development of
OIL in Spoofax, executed by five developers over more than
four years, allows us to make interesting observations on
language engineering, distill strengths and weaknesses of
Spoofax, derive lessons learned for future language engi-
neering efforts, and propose areas of future work to improve
the language workbench.

1.1 Outline

This paper is structured as follows: First we provide back-
ground on Spoofax in Sect. 2 and on OIL in Sect. 3. We dive
into the context and setup of the case study and we elab-
orate on our research question in Sect. 4. Next, we discuss
the language engineering aspects of OIL’s implementation in
Spoofax in separate sections, and we evaluate our research
question for each aspect at the end of those sections. We dis-
cuss the implementation of OIL’s concrete syntax in Sect. 5.
In Sect. 6, we discuss the abstract syntax representation of
OIL. Then in Sects. 7 and 8, we discuss the implementation
of the static and dynamic semantics of OIL, respectively. In
Sect. 9, we summarize our findings regarding the research
question and discuss threats to validity. We discuss experi-
ences that are not directly related to the research question
in Sect. 10, as well as list our lessons learned and provide a
research agenda for Spoofax. We position our work with that
of others in Sect. 11. We conclude in Sect. 12.

1 https://cpp.canon.

123

https://cpp.canon

OIL: an industrial case study in language engineering with Spoofax

2 Spoofax

In this section, we provide background information on
Spoofax, which is useful for understanding the way that OIL
is implemented in Spoofax in later sections. Spoofax2 is an
open source languageworkbench that promises to support the
development of textual DSLs by offering meta-DSLs (DSLs
for specifying DSLs) for concise, declarative specifications
of languages and IDE services [17]. The idea of declarative
language definition is that language developers focus on the
high-level specification of their languages rather than focus-
ing on the low-level implementation of, e.g., parsing or type
checking algorithms. Based on language aspects specifica-
tions in the meta-DSLs, Spoofax automatically generates an
IDE.

Spoofax is developed at the Delft University of Technol-
ogy since 2007 [9], building on previous work on syntax
definition with SDF2 [18] and program transformation with
the Stratego XT toolset [19]. Besides SDF2 and Stratego, the
first version of Spoofax offered meta-DSLs for static seman-
tics (NaBL2 [20]), editor services (ESV), and testing (SPT).
Spoofax Core [21], implemented in Java, integrates themeta-
DSLs and provides a build system to automatically transform
language specifications into implementations. Spoofax is pri-
marily deployed as a plugin for the Eclipse IDE.3

Developments on Spoofax since the introduction of the
language workbench include:

• Syntax. The syntax definition formalism SDF3 [22] with
support for template-based syntax definition.

• Transformation. The program transformation language
Stratego 2 with support for gradual typing [23] and incre-
mental builds [24].

• Static Semantics.Static semantics specification (NaBL2
and its successor Statix [25], both based on a scope graph
model [26]) and support for incremental type check-
ing [27].

• Data-Flow. The data-flow analysis specification lan-
guage FlowSpec [28].

• Incremental Builds. Interactive software development
pipelines with PIE [29].

• IDE support. Static semantic code completion [30].
• Testing Language test suites with the Spoofax Testing
language (SPT).

The case study in this paper has been performed with
Spoofax version 2 [21], making use of the SDF3, NaBL2,
Stratego, ESV, and SPT meta-DSLs. Spoofax version 3
(including Stratego 2, Statix, and PIE) was under develop-
ment during the execution of this study and could therefore

2 https://spoofax.dev.
3 https://www.eclipse.org/ide/.

Fig. 1 An example program in EXP and its corresponding abstract
syntax in ATerm

not yet be considered. In Sect. 10, we discuss how our find-
ings relate to Spoofax 3.

In the remainder of this section, we discuss both con-
ceptual and practical aspects of language engineering with
Spoofax, which are important for understanding the Spoofax
implementation of OIL. Also, we will further introduce the
meta-DSLs for the language aspects that are relevant in our
case study. We use a simple expressions language EXP as
a running example, which supports integers, addition, mul-
tiplication, let bindings and references. Figure 1 depicts an
example EXP program and its corresponding abstract syntax.

2.1 Anatomy of Spoofax projects

A Spoofax project consists of source files and configuration
files. The source files primarily consist of specifications in
the meta-DSLs. For integrating a language implementation
with external libraries, Java source files can be included as
well. The language build and dependencies are configured in
the configuration files. All sources files are textual and are
therefore typically stored in a version control system.

Based on the source files and configuration files, Spoofax
generates language artifacts such as parse tables, AST
schemas, and ultimately the complete language implemen-
tation in the form of an Eclipse plugin. During a language
build, besides the sources that the language developer writes,
additional sources are generated which can be referenced
by other specifications or form an input for a further build
step. For example, signatures are generated automatically
from the SDF3grammar and can be used in Stratego to
define transformation rules on. These generated sources are
stored separately from the main source files and are typically
ignored in version control.

Projects can define a complete language, define (library)
sources intended for reuse by other language projects, or only
define a transformation for an existing language. Through
dependencies between projects, different forms of language
composition can be realized. For example, a language project
can re-use definitions of another language by adding that

123

https://spoofax.dev
https://www.eclipse.org/ide/

O. Bunte et al.

Fig. 2 A Stratego code snippet that defines an AST schema for EXP

project as a dependency. Also, a project can contribute a
transformation to an existing language, such that more func-
tionalities become available for a language, independent
from its original implementation.

2.2 Data representation with ATerms

The languageATerm (Annotated Terms) [31] defines the rep-
resentation of abstract syntax trees (ASTs) and data used by
most othermeta-DSLs. TheseASTs and data consist of terms
(often referred to as “ATerms”) that can be annotated with
additional data. A term can either be a number, a string, a list
of terms, or a constructor with zero or more subterms. The
annotations on terms are typically used to store metadata,
such as static analysis results. ATerm serves as the “glue”
between themeta-DSLs. For example, the output of anSDF3-
based parser is an AST expressed in ATerm. ATerm is the
object language for the Stratego transformation meta-DSL,
i.e., Stratego defines transformation rules for terms expressed
in ATerm. Also, name binding and typing specifications in
NaBL2 consist of rules that apply to ATerm patterns.

Terms must adhere to many-sorted algebraic signa-
ture [32] definitions, which are defined in Stratego. The
signatures define sorts and constructors. Sorts represent syn-
tactic categories (also knownas non-terminals, e.g.,Exp) and
constructors specify instances of these sorts (e.g., Add). The
snippet in Fig. 2 contains signature definitions for EXP. It
defines unary Int and Ref constructors for the sort Exp,
binary Add and Mul constructors for the sort Exp, and a
ternary Let constructor. Figure 1 contains an example term
that conforms to the signatures.

2.3 Syntax definition with SDF3

SDF3 [22] is a syntax definition language that covers more
than realizing a parser implementation based on a gram-
mar specification. From an SDF3grammar, the following
language implementation artifacts are generated automati-
cally: an AST schema, a parser with error recovery, a pretty
printer, a parenthesizer, syntax highlighting, and syntactic
code completion. The SDF3 formalism extends context-free

Fig. 3 Two SDF3 code snippets that define the syntax for EXP

grammars [33]with high-level syntaxdefinition features such
as constructor declarations (used for AST schema generation
in the form of ATerm signatures), disambiguation constructs
(for disambiguation and generating a parenthesizer), and
templates (for deriving pretty printers) [34].

See Fig. 3 for two modules of SDF3 that define the syntax
of EXP. The second module (exp) imports the first module
(lex). For example, in exp, the rule on line 7 defines a rule
for integers, using the lexical syntax for INT defined in lex.
The rules on lines 8–9 are defined to be left-associative using
the {left} disambiguation construct. The left-hand sides
of grammar rules consist of a sort (e.g., Exp) and option-
ally a constructor declaration (e.g., .Add). The signatures of
Fig. 2 are generated automatically based on the constructor
declarations in this grammar.

In addition to associativity declarations for disambigua-
tion of an operator with itself, the context-free
priorities section defines disambiguation through pri-
orities between operators. In the example, Exp.Mul has
higher priority than Exp.Add which has higher priority
than Exp.Let (line 16). Priority declarations are transi-
tive.When importingmodules in SDF3, their disambiguation
rules are imported with them as well. Note that this may cre-
ate new ambiguities between grammar elements of different
modules, so additional disambiguation rules may need to be
defined.

123

OIL: an industrial case study in language engineering with Spoofax

Fig. 4 The scope graph that corresponds to the example EXP program
of Fig. 1. Scope s1 is the root scope node and corresponds to the while
program. Scope s2 is the scope introduced for the body of the let oper-
ator, consisting of the expression x = 20 + 1. The declaration of x is
represented by the outgoing edge from scope s1. The reference of x is
represented by the incoming edge to scope s2. This name binding in
this program is valid, as there exists a path from the reference of x to
its declaration

SDF3-based parsing involves the process of imploding,
i.e., transforming parse trees into ASTs. Only the nodes in
the parse tree that are parsed based on grammar rules for
which a constructor has been declared end up in the AST,
which filters out irrelevant details of the concrete syntax
such aswhite space and comments. This filtering is necessary
because SDF3 uses a scannerless parsing approach [18, 35],
a foundational characteristic which makes SDF3grammar
composable.

During parsing and imploding, the created AST terms are
annotated with the origin location of the parsed syntactic ele-
ment in the input program, which is the first step of origin
tracking [36]. These origins can be maintained during trans-
formations, which is useful for, e.g., error reporting.

To adapt the formatting of the text produced by the pretty
printer that is generated from the SDF3grammar, one can
enhance the SDF3grammar with templates. The example of
Fig. 3 uses such templates for Add, Mul and Let, which
is indicated by the square brackets that are placed around
the right-hand sides of the grammar rules. Any formatting
between these square brackets, including spaces, tabs, and
newlines, will be used by the pretty printer. In case square
brackets are part of the grammar definition, angular brackets
can be used instead.

2.4 Static semantics with NaBL2

NaBL2 [20, 37], pronounced as “enable two”, is a static
semantics definition language which covers name binding
and type systems based on the scope graph model [26].
Given an NaBL2 specification, programs are transformed
into constraints and a scope graphwhich captures the binding
structure and typing of the program. Name resolution corre-
sponds to finding a path in the graph from a reference to
its declaration. An NaBL2 specification contains constraint
generation rules for every term in the AST schema of the lan-
guage, with conditions that specify how the term contributes
to scope graph generation, name binding, and typing.

Figure 4 depicts the scope graph that corresponds to the
example EXP program of Fig. 1. Each term is made part of
a scope, which is a node in the scope graph. Declarations
and references (e.g., of variables) are also added as nodes
in the scope graph. For declarations in a scope, we add a
node for the declaration with an edge from the scope to the
declaration. For language constructs that introduce a deeper
level in the overall scoping structure, the scope is added to
the graph as a new node with an edge to the parent scope. For
a reference, a node is added with an edge from the reference
node to the node of the scope the reference is made from.
Name resolution thenboils down tofinding a path in the scope
graph from the reference to the corresponding declaration.

By assigning types to terms, type analysis can check or
infer types. Conditions in constraint rules can be extended
with an error message applied to a term. Whenever a condi-
tion fails, the error message can be displayed on the origin
of the term using origin tracking.

See Fig. 5 for an NaBL2 snippet that specifies name and
typing rules for EXP. Four rules are defined, identified in
double square brackets (lines 2, 4, 9 and 17). The rule for
term Int (line 2) assigns the type TInt to the term. The
rule for Add recursively specifies the semantics for its sub-
expressions by calling constraint rules on exp1 and exp2
using double square brackets (lines 5–6). Note that no rule
references are used: the rule that needs to be applied depends
on the outermost constructor of the sub-expressions. After-
ward, it is defined that their types should be the same (line 7).
For more complex type systems, it is possible to define rela-
tions between types. This enables, for instance, the addition
of an integer with a float and the computation of the resulting
type. The rule for Mul has been omitted as it is similar to the
rule for Add.

The rule for let bindings (line 9) introduces a new scope
s’ (line 10), sets s as the parent scope of s’ (line 11)
and attaches a declaration node Var{x} for name x in the
namespace Var to scope s’ using an arrow pointing toward
the declaration node (<-, line 12). It then analyses the first
expression within scope s (line 13) and assigns the derived
type ty1 to the declaration node (line 14). Lastly, it con-
tinues the analysis with the second expression within scope
s’ (line 15). The rule for variable references (line 17) first
attaches a reference node Var{v} for name v in the names-
pace Var on scope s using an arrow pointing away from
the reference node (->, line 18). Afterward, it is checked
whether some declaration d exists for reference Var{v}
using operator |-> (line 19), effectively checking whether
there exists a path through the scope graph from the reference
node to a declaration node with the same name and names-
pace.We then require that this declaration d has typety (line
20), which is the same type as the Ref term that the rule is
defined on (line 17).

123

O. Bunte et al.

Fig. 5 An NaBL2 code snippet that declares name binding and typing
for EXP

Fig. 6 A Stratego code snippet that defines transformations on EXP for
simplifying expressions

2.5 Transformation with Stratego

Stratego [19, 38] is a transformation language based
on term rewriting and programmable rewriting strategies.
Rewrite rules specify how a single input term transforms
into an output term. These rules can be combined by putting
them in sequence (e.g., r1; r2), by non-deterministically
choosing between them (e.g., r1 + r2), or they can be
passed to pre- or self-defined AST traversal strategies such
as topdown(r1) or bottomup(r1).

See Fig. 6 for an example Stratego transformation for EXP.
Strategy simplify0 simplifies expressions that contain
zeroes by performing a bottom-up traversal through the AST
and trying to apply rule simplify0-term on every AST

Fig. 7 A Stratego code snippet that defines a printer for EXP

node. The rule simplify0-term is defined four times,
each for a different type of expression that can be simpli-
fied. Each simplify0-term rule is tried until the AST
node matches with the left-hand side of the rule, after which
the transformation is applied. The order in which the rules
are tried is chosen non-deterministically during runtime. The
try rule allows each simplify0-term rule to fail, which
can happen, for instance, when the AST node is an Int term,
after which it simply continues with the traversal.

Transformations with Stratego are generally model-to-
model, which can be both endogenous (source and target
are the same language) and exogenous (source and target
are different languages) [39]. Figure 6 is an example of an
endogenous model-to-model transformation. It is also pos-
sible with Stratego to define model-to-text transformations,
since a string is a valid term too. Stratego supports such trans-
formations with templates, denoted with $[..]. A template
defines a string in which variables and transformation rules
can be used to create substrings. See Fig. 7 for a transfor-
mation that prints an EXP AST. Note that given the syntax
definition of EXP, such a pretty printer is generated automat-
ically.

2.6 Editor services with ESV

ESV is a language for defining editor services.AnESVspeci-
fication can, e.g., customize syntax highlighting coloring and
configure editor actions. See Fig. 8 for an ESV snippet that
adds an editor action for EXP. This snippet defines a new
menu called Simplifications, consisting of an action
Simplify zeroes. This action is mapped to the trans-
formation editor-simplify0 (definition not explicitly
shown), which applies simplify0 to an EXP specifica-
tion. These actions can be invoked in the IDE via the menu
Simplifications / Simplify zeroes whenever
an EXP file is in focus.

123

OIL: an industrial case study in language engineering with Spoofax

Fig. 8 An ESV code snippet that adds an editor action to simplify
expressions with zeroes in an EXP specification

Fig. 9 An SPT code snippet that defines a test for simplify0

2.7 Testing with SPT

SPT [40] is a language testing framework for languages
implemented in Spoofax. In SPT, test programs can be writ-
ten and tested for errors and expected outputs. For testing
static analysis, one can, e.g., provide an incorrect program
where some elements have been marked. Then in the test
expectation one can specify at which of these markers an
error should occur. For testing transformations, one can pro-
vide an input program, an editor action to execute, and an
expected output program. Such a test compares the AST that
results from the editor action to the AST that results from
parsing the expected specification, so the formatting of the
provided specifications does not influence the test.

See Fig. 9 for an SPT snippet that defines a test for the
simplify0 transformation. Line 4 defines the input spec-
ification, line 5 defines the editor action to apply, and line 6
defines the expected output specification.

3 OIL

We first give an overview of OIL. Afterward, we define a
number of features that should be realized by the implemen-
tation of OIL in Spoofax.

3.1 History of OIL

OIL, which stands for Open Interaction Language, is a lan-
guage developed by Van Gool (co-author) to model the
behavior of control-software systems. In its early stages, OIL
was designed to model the intended communication behav-
ior between a group of components, known as a protocol.
Later, OIL was adapted to also enable the modeling of indi-

vidual components. Although OIL is developed at Canon
Production Printing, it is not limited to modeling systems
within the printing domain. The original syntax of OIL is
XML-based, but a more user-friendly DSL variant was cre-
ated using Spoofax [41]. Though OIL is a textual language, it
was designed to allow for an unambiguous visualization, as
this is indispensable for communication between engineers.

With the development of OIL also came dedicated tool-
ing. This tooling, implemented in Python, is able to parse
and validate OIL specifications. It is a web-based envi-
ronment in which OIL specifications can be inspected but
not edited; editing happens inside a separate IDE, typically
Visual Studio. The tooling also supports the visualization
of OIL specifications, as well as simulation of traces over
this visualization. For OIL component specifications, it can
generate executable code, which has been used to implement
several complex software components for printers developed
at Canon Production Printing. In this web-based tooling, OIL
specifications can be pretty printed and editor services such
as syntax highlighting and error reporting are available. In
the rest of this document, we refer to this implementation of
OIL as “the Python implementation”.

3.2 Overview of OIL

OIL is a state machine language that uses variables to store
the current state. These variables and their values can be rep-
resented by areas, which are connected with transitions that
can specify updates of variables, triggered by the occurrence
of events. In this section, we give an informal description
of the concepts of an OIL component specification and their
semantics that are relevant for this paper. For a more in-depth
description of OIL and a definition of its formal semantics,
see [42].

We use the OIL component specification in Fig. 10 as
running example. This OIL specification models a printer
that, after a client has registered, can be turned on and off.
When it is on, jobs of at most three sheets can be sent to
the printer that are immediately processed. The printer also
keeps track of its temperature and must be cooled down if
it becomes too hot. See Fig. 11 for a visualization of the
running example.

Each OIL component specification defines a number of
instance variables (lines 9–12), which store the state that the
modeled component is in. Four types of instance variables are
supported: boolean, enum, integer and component instance
reference. Enum types can be definedwithin the specification
itself (line 7).

There are three types of areas: regions, states and zones
(lines 14–33). A region always refers to an enum variable
and contains a number of states. These states each represent
a value that the variable of its region can have. A zone has

123

O. Bunte et al.

Fig. 10 The OIL specification for an overheating printer (in the newer
DSL notation)

a Boolean expression over variables and is used to restrict
behavior.

The change of values for instance variables is triggered by
the occurrence of events. Each event has an operation, which
refers to the function being called. This operation may have
parameters, which make it possible to transfer data between

components. In the context of a component, the cause of an
event can be either reactive or proactive. Reactive events are
initiated by the environment, whereas proactive events are
produced by the component itself, either sent to the environ-
ment or kept internally, the latter are also known as silent
events (Fig. 12).

Operations are declared in separate specifications in a lan-
guage called IDL, short for Interface Definition Language
(very similar to, but not to be confused with Microsoft’s
IDL4). Each IDL specification defines a number of modules,
which contain interfaces, which in turn contain declarations
of operations, possibly with parameters. A module may also
contain enum type definitions,which can be used to define the
type of a parameter. If one wants to refer to operations within
an OIL component specification, the IDL modules in which
they are definedmust be imported (line 3, Fig. 10). Interfaces
in the imported module can then be provided or required by
the component (lines 4–5). The operation of a reactive event
must be part of a provided interface, and the operation of a
proactive event must be part of a required interface.

The occurrence of an event corresponds to the firing of
transitions labeled with that event (lines 35–57). Each transi-
tion has a source area (in), an event label (on/do), a target
state (go) and a concern (concern), and optionally a guard
(if), assignments (assign), an assertion (assert, not
in example) and arguments for parameters (line 50, within
parentheses).

3.3 Implementation features

The desired implementation of OIL in Spoofax is required to
realize a number of features. Though these features may not
be complex to implement individually, the realization of the
combination of these features can be. Below, we elaborate
on each OIL feature (OF).

OF 1 Multiple Syntaxes. OIL and IDL both offer an XML-
based and a custom DSL syntax. Both syntaxes should be
implemented; the XML syntax for backwards compatibility
and because it is easier to parse for external tools, and the
DSL syntax for a better user experience. It should be possible
to transform a specification in one syntax into the other and
all transformations to other targets should be available for
both syntaxes.

OF 2 Desugaring. OIL specifications allow some syntactic
sugar, mainly in the form of leaving OIL concepts implicit,
which reduces how much a user needs to write. For instance,
in the running example, for region job (line 25) the variable
reference is left implicit and for statesinit,active,idle
andbusy (lines 14, 15, 27 and 28) the values are left implicit,

4 https://learn.microsoft.com/en-us/windows/win32/midl/midl-start-
page.

123

https://learn.microsoft.com/en-us/windows/win32/midl/midl-start-page
https://learn.microsoft.com/en-us/windows/win32/midl/midl-start-page

OIL: an industrial case study in language engineering with Spoofax

Fig. 11 A visualisation of the
example OIL specification of
Fig. 10. States that are filled
with a color correspond to the
initial state.

as well as corresponding enum types definitions. Also, the
region for states init and active is left out. See Fig. 13
for how the first half of the running example would look
like after desugaring. The implementation should be able to
automatically desugar this andmake the implicit information
explicit.

OF 3 Input Correctness. Not every specification is a cor-
rect OIL specification in terms of syntax or static seman-
tics. Checking the static semantics of an OIL specification
involves three types of analysis: structural checks, name res-
olution and type checking. The implementation should be
able to check whether a specification meets all syntax and
static semantics requirements and report useful errors to the
user if it does not.

OF 4 Language Interaction. IDL is a standalone language
that can be used for other purposes than the context of OIL.
OIL on the other hand should depend on IDL, both syntacti-
cally and semantically. Syntactically, because both languages
use expressions and we want to minimize duplicate grammar
definitions. Semantically, because module, interface, opera-

Fig. 12 The IDL specification onwhich theOIL specification of Fig. 10
depends

tion and parameter names in OIL specifications should refer
to declarations in IDL specifications. The implementation
should reflect this: IDL should be implemented separately

123

O. Bunte et al.

Fig. 13 Thefirst half of theOIL specification of Fig. 10 after desugaring

and the implementation of OIL should depend on the imple-
mentation of IDL. This involves several forms of language
composition [43] and language modularity [44, Sec. 4.6].

OF 5 Multiple Targets. To represent the dynamic semantics
of an OIL specification, it should be possible to translate OIL
into other languages for which such semantics exists. For the
formal verification of an OIL specification, the implemen-
tation should support a translation to mCRL2 [45]. For the
execution of anOIL specification, the implementation should
support a translation to GPL code.

4 Case study context andmethod

In this section, we first describe the context of our case
study. Next, we elaborate on our method for investigating
the research question. Lastly, we describe the setup of our
case study.

4.1 Context

Our evaluation focuses on two implementations of OIL, the
Python implementation and the Spoofax implementation.
The Python implementation was initially developed around
2011 by the third author and is still maintained by the third
author to this day. The first author also worked on the Python
implementation for a fewmonths in 2016 as part of an intern-
ship within Canon Production Printing. The second author
initiated the Spoofax implementation in 2018. A fewmonths
later, the first author also joined on the Spoofax implementa-
tion and both first and second authors have been maintaining
this implementation ever since. During this time, the third
author was involved in the design decisions for the Spoofax
implementation and some master students have contributed
as well [46–48].

Before the Spoofax implementation was created, the sec-
ond author was already familiar with language development
in Spoofax. The second author has also been a contributor to
Spoofax since before this study. The first author had limited
experience in language development and no experience with
Spoofax, but had some previous experience on rewriting and
formal semantics. During the development of the Spoofax
implementation, the developers had a close connection to
the Spoofax development team for any questions and advice.
All involvedmaster students had no experience with Spoofax
before they joined.

The third author is the creator of OIL, inspired by his prior
research in the field of the specification of behavior [49]. The
first author got experience with OIL during the internship, in
which the goal was to understand and formalize the seman-
tics of OIL by means of a(n) (initial) translation to mCRL2,
on which the current translation to mCRL2 in Spoofax is
based [50]. Prior to that, the first author had experience with
behavior specification languages, specifically mCRL2. The
second author had little experience with behavior specifica-
tion languages before the development of OIL. All involved
master students had no experience with OIL before they
joined, but most had some experience with behavior spec-
ification languages.

4.2 Researchmethod

Productivity is about the amount of effort needed to imple-
ment some functionality. As proxy for effort we use code
volume, as it is the only information available to us in this
study that relates to effort. To represent functionality, we col-
lect software artifacts relevant to language engineering that
an implementation produces, such as parsers or transforma-
tions.

We compare the implementation of OIL in Spoofax with
the implementation of OIL in Python. We do this by first
gathering all artifacts relevant to language engineering. Then,

123

OIL: an industrial case study in language engineering with Spoofax

for each artifact implemented in both implementations with
similar functionality, we measure the code volume that is
used to implement it and compare the measured code volume
between the two implementations. In case parts of the code
volume are reused for multiple artifacts or other projects,
we measure it separately. Any dissimilarities between imple-
mentations of a language engineering artifact are discussed.

We use the Source Lines of Code [51] (SLOC) metric
for measuring code volume, which excludes blank lines,
comments, and lines only containing brackets from count-
ing. In particular, we use the Physical SLOC metric [51],
which considers each non-excluded line as a single line.
This is in contrast to the Logical SLOC metric [51], which
counts executable statements of which there could be multi-
ple on a single physical line. Since the Spoofax meta-DSLs
are declarative and the code written in these meta-DSLs do
not necessarily correspond directly to statements or units of
execution, we cannot measure Logical SLOC for both imple-
mentations. In the rest of this paper, we use “SLOC” to refer
to Physical SLOC.

We are aware that using code volume, quantified using
a variant of the Lines of Code metric, is controversial and
comeswith advantages and disadvantages [51–54].However,
an important motivation for using code volume per artifact as
proxy for productivity is that it is an objective and repeatable
measure and that it is applicable to both the Python and the
Spoofax implementation.

Comparing code volume of the two implementations is
only sensible when the volumes correspond to code that
implements the same functionality. Since the two implemen-
tations do not always implement the exact same functionality,
we first identify commonalities and differences before mea-
suring volume. Then, in each implementation’s code volume
measurement, we subtract lines for features or language con-
structs that are not in the other implementation to end up
with a comparison of code that implements the same func-
tionality. We do these measurements separately for artifacts
in both implementations. We analyze where differences in
code volumes originate from and to what extent parts of
the implementations are reusable. We consider code to be
reusable if it is generic enough such that it can be reused for
other purposes, such as other language implementation, or
for purposes outside of OIL altogether.

Depending on the artifact that is being compared, the rel-
evant code consists of whole files or parts of files. When
measuring code volume of whole files, we use the cloc tool5

for the measurements, which counts SLOC and has builtin
support for Python. To use this tool on measuring code
written in Spoofax meta-DSLs, we manually add language
definitions to cloc such that the tool can properly detectwhich
lines need to be excluded from counting, such as lines with a

5 https://github.com/AlDanial/cloc.

single square bracket. When measuring code volume in parts
of files, we count lines of code by hand. With the code mea-
surements that we give, we also go into more detail on how
we came to these measurements.

4.3 Setup

We answer the research question for the implementation
aspects of language engineering separately. These are con-
crete syntax, abstract syntax, static semantics, dynamic
semantics and design environment [55]. Since the design
environment, which is about tool support for the language, is
claimed to be (mostly) automatically derived by Spoofax, we
do not consider this aspect separately, but as part of the other
four aspects instead. Since the Python implementation does
not have a dedicated text editor, this will only concern editor
services such as syntax highlighting. Thus, we consider the
following four aspects:

• Concrete syntax (Sect. 5): the textual representation of
a language.

• Abstract syntax (Sect. 6): the internal representation of a
language, including desugaring transformations defined
on it.

• Static semantics (Sect. 7): the validity of specifications
in a language.

• Dynamic semantics (Sect. 8): the execution of specifi-
cations in a language.

In each of these four sections, we first highlight parts of the
implementation that are relevant to the aspect. Afterward, we
evaluate Spoofax by answering the research question in the
context of the aspect on a number of parts of the implemen-
tation, which we call evaluation points. For each evaluation
point, we structure the evaluation in the following parts:

• Question: what do we want to evaluate?
• Method: how are we going to evaluate this?
• Results: what is the information from the implementa-
tion(s) that is relevant for this evaluation point?

• Analysis: what does this informationmean and how does
it answer our question?

• Conclusion: what does the analysis give as answer to the
question?

• Discussion: What else is relevant for this evaluation
point?

We combine and summarize the findings of the evalua-
tion points in Sect. 9.1. Since code volume per artifact does
not exactly correspond to productivity [51–54], our mea-
surements are not directly representative for the research
question. Therefore, in Sect. 9.2, we discuss the threats to

123

https://github.com/AlDanial/cloc

O. Bunte et al.

the validity of our findings and how we have tried to counter
them.

While our evaluation is mostly based on drawing con-
clusions from a quantitative analysis, we also make various
observations on qualitative aspects. In Sect. 10, we discuss
those observations on qualitative aspects. We discuss the
strengths and weaknesses of Spoofax that we experienced
and list the lessons we learned. We also propose an agenda
of future work for Spoofax and discuss how some of the limi-
tations that we encounter are already fixed in the next version
of Spoofax.

5 Concrete syntax

The Spoofax implementation ofOIL comprisesmultiple syn-
tactical (sub)languages forwhich thegrammar is definedwith
SDF3. It supports the originalXMLsyntax ofOIL and IDL as
supported by the Python implementation, as well as a newly
designed custom syntax, resulting in a total of four input lan-
guages and realizing OF1 (Multiple Syntaxes). These input
languages share common grammar rules for expressions,
which touches on OF4 (Language Interaction).

In this section, we describe the design of the existing and
new syntaxes in Spoofax, their modular implementation, and
the reuse of shared expression grammar rules and its implica-
tions ondisambiguation.Also,wedescribe concrete syntax in
the Python implementation and indicate how it differs from
the Spoofax implementation. These descriptions form the
sources of information for the evaluation that follows, where
we answer the research question on productivity for the con-
crete syntax aspect of OIL’s implementation in Spoofax.

5.1 From XML to custom syntax

Implementing a language with concrete syntax in Spoofax
requires a grammar written in SDF3. The grammar specific
for the OILXML subset of XML consists of a grammar rule
for each XML element, with, if applicable, a list of specific
attributes of the element and, if applicable, a list of child ele-
ments. Figure 14 shows an excerpt of the SDF3grammar of
OILXMLfor the transition concept (seeSect. 3.2). Figure 16a
contains an example transition inOILXML, andFig. 16c con-
tains the corresponding abstract syntax, expressed in ATerm
(see Sect. 2.2).

The original Python implementation uses XML as its syn-
tax because of two reasons. First, other projects at Canon
Production Printing already used XML and thus engineers
are familiar with it. Second, for XML an off-the-shelf parser
could easily be used. However, writing XML specifications
by hand is not user friendly [56, p. 101]. Although a custom
syntax was desired already in the Python implementation
to improve usability, implementing it was considered too

Fig. 14 An SDF3 code snippet of the grammar of transitions in
OILXML

muchwork.With Spoofax’s language-oriented programming
view [57], re-implementing OIL in Spoofax made it much
more feasible to design a custom syntax for OIL, dubbed
“OILDSL”.

The most prominent problem of XML syntax is the syn-
tactic noise of XML elements and attributes. Still, the same
high-level structure of OIL’s concepts from OILXML was
used as a basis for designing the new syntax. By doing so,
the abstract syntax of both syntaxes is similar, which eases
forward and backward migration between both syntaxes.
Without the noise of XML elements in OILDSL, the syn-
tax for transitions becomes simpler; XML open and closing
elements are replaced with simple keywords and brackets.
Figure 15 shows an excerpt of the SDF3grammar for tran-
sitions in OILDSL. Figure 16b shows the concrete syntax in
OILDSL that corresponds to theOILXMLvariant in Fig. 16a,
and Fig. 16d depicts the corresponding AST.

5.2 Composed grammars and disambiguation

The four input languages (IDLXML, IDLDSL, OILXML
and OILDSL) share parts of their grammars, especially in
the context of expressions: the expression grammar of OIL
extends the expression grammar of IDL, and the XML and
DSL expression grammars only differ in a few operators. To
prevent the definition of duplicate grammar rules across the

123

OIL: an industrial case study in language engineering with Spoofax

Fig. 15 AnSDF3code snippet of the grammar of transitions inOILDSL

Fig. 16 An example transition in OILXML and OILDSL with the cor-
responding ASTs

Fig. 17 A (simplified) import graph of IDL’s and OIL’s expression
grammars, that depicts howmodules are reused.Node labels correspond
the SDF3 module names. Arrows mean “imports”

SDF3grammar definitions of the input languages, the gram-
mar definitions are split up into several reusable modules.
See Fig. 17 for all SDF3 modules that define grammar
rules for expressions. Modules idl/xml/exp, idl/dsl
/exp, oil/xml/exp and oil/dsl/exp define the
expression grammar for IDLXML, IDLDSL, OILXML and
OILDSL respectively. Shared grammar is defined in sepa-
rate modules and reused for multiple grammars by means of
import statements. As an example, Fig. 18 shows the com-
position of the IDLXMLexpression grammarwith the shared
OIL expression grammar (module oil/shared/exp) to
obtain theOILDSL expression grammar in SDF3. TheXML-
specific grammar rules are defined once for IDLXML in
module idl/xml/exp and are reused for OILXML by
importing them in module oil/xml/exp. Also, the OIL-
specificgrammar rules, used for bothOILDSLandOILXML,
are imported from module oil/shared/exp. Together,
both imported modules form the expression grammar of
OILXML.

Moduleidl/xml/exphas emerging ambiguities between
the XML-specific operators and other operators. Syntactical
ambiguity is when a single input program can be parsed to
multiple different trees using the same grammar. For exam-
ple, 1 + 2 >= 3 could be parsed in two ways: (1 +
2) >= 3 and 1 + (2 >= 3).With priorities in
SDF3, one can define the relative precedence of expression
operators. Since priorities are transitive, only priorities with
respect to direct neighbors in the priority order (operators
Plus/Minus and Eq/Neq) are required for the new opera-
tors. Because Plus gets a higher priority than XMLGeq, the
previous example will be parsed as (1 + 2) >= 3.
In module oil/xml/exp, no additional disambiguation is
required, as no more new combinations of expression oper-
ators arise and no other syntactical ambiguities emerge.

123

O. Bunte et al.

Fig. 18 SDF3modules that define the expressions syntax for OILXML
(simplified). The Exp.Reference constructor defines a variable ref-
erence using the lexical ID sort. The Exp.Old constructor defines a
suffix operator for referencing old values of a variable, which can be
used in assertions

5.3 The Python implementation

The Python implementation only supports IDLXML and
OILXML. The parser for these languages consists of two
stages. First, the XML structure is parsed using theMinidom
library.6 Second, the expressions inside XML elements are
parsed using the Pyparsing library.7 For both stages, the
implementation uses a custom layer on top of the libraries to
support grammar specification and parser implementation.
For example, the Python implementation uses a metamodel
expressed in a custom XML subset that defines the restric-
tions of OILXML with respect to generic XML.

6 https://docs.python.org/3/library/xml.dom.minidom.html.
7 https://pypi.org/project/pyparsing/.

Figure 19 shows an excerpt of this metamodel. Lines 2–4
define a regular expression for identifiers that can be referred
to in other parts (see, e.g., line 10). Lines 6–33 define expres-
sions, in which the order of levels of operators indicates the
precedence between operators. Lines 35–47 define the tran-
sition concept. A Python script parses this metamodel and
checks for an input OIL program, parsed using Minidom,
whether it conforms to the metamodel. Helper functions on
top of Pyparsing ease the definition of expression gram-
mar rules, e.g., by automatically allowing whitespace around
operators. The levels of operators are used to define prece-
dence in Pyparsing. The custom layer is not specific to OIL
and can be reused for other XML languages with embedded
expressions.

In Sect. 3.1, we have described the Python implementa-
tion’s environment for viewing and editing OIL specifica-
tions. Several editor services related to viewing and editing
concrete syntax similar to those in regular IDEs are available,
which we detail below. For viewing OIL specifications, the
Python implementation supports pretty printing and origin
tracking (for error reporting, see Sect. 2.3), which are imple-
mented manually. Both pretty printing and origin tracking
are implemented in Python based on the data structures that
result from the parsers.

For editingOIL specifications, the Python implementation
has limited custom support. The web-based Python imple-
mentation does not include an editor, so external tools are
used instead for editing OIL specifications, typically the
Visual Studio IDE. To support the editing of OIL spec-
ifications, an XSD (XML Schema Definition Language8)
file is generated from the metamodel using a handwritten
script. XSD schemas define a subset of the XML language.
A generic IDE plugin for XML uses this XSD file to provide
syntactic code completion and error recovery. AlthoughXSD
could also be used for realizing a parser, it was only used for
realizing limited editor support because XSD was found not
to be expressive enough to cover all syntactical aspects of
OIL.

5.4 Evaluation

To evaluate the productivity of implementing concrete syn-
tax, we look at a single evaluation point: the complete
implementation of concrete syntax in OIL’s implementations
in Spoofax and in Python. We consider seven concrete syn-
tax artifacts: the grammar, the parser, and the editor services
pretty printing, origin tracking, syntax highlighting, error
recovery and syntactic code completion.

Question.Does it cost less code volume to implement the
artifacts for OIL’s concrete syntax in Spoofax compared to
Python?

8 https://www.w3.org/XML/Schema.

123

https://docs.python.org/3/library/xml.dom.minidom.html
https://pypi.org/project/pyparsing/
https://www.w3.org/XML/Schema

OIL: an industrial case study in language engineering with Spoofax

Fig. 19 An excerpt of the Python implementation’s metamodel for OIL, expressed in a custom chosen subset of XML. OIL specifications are
checked to conform with this metamodel using a handwritten but generic Python script

123

O. Bunte et al.

Method. First we identify for each of the seven artifacts
related to concrete syntax to what extent they are realized
in the SDF3 and Python implementations of OIL. Then, per
artifact, we measure and compare the code volume (in terms
of SLOC [51]) related to the artifact in each implementation.

For the sake of comparability, we want to compare the
lines of code of the implementations where they implement
the exact same syntax. The Python implementation only
contains OILXML and not OILDSL. Thus, in the Spoofax
implementation we consider the grammar except those parts
specific to OILDSL, i.e., we consider the OILXML-specific
parts and the parts shared between OILXML and OILDSL.
Since the syntactic languages of both implementations are not
exactly the same, we subtract lines from our measurements
that concern syntactical elements not present in the other
implementation. In the Python implementation’smetamodel,
wemanually exclude tags that are specific for documentation
from the counting, as we consider them as comments in the
definition of SLOC. Since XML and expression parsing are
separately implemented in Python, we measure and analyze
those separately.

Both the Python and the Spoofax implementation of OIL
could be seen as consisting of OIL-specific code and more
generic, reusable code. We consider code to be reusable if it
is generic enough such that it can be reused in the imple-
mentation of a language other than OIL. In the Spoofax
implementation, we reuse code from the standard library of
Spoofax, and we do not include it or the implementation of
the language workbench itself in the measurements. In the
Python implementation, both OIL-specific and reusable code
are implemented manually, which we therefore both mea-
sure. We count OIL-specific code separately from reusable
code. For the reusable code, we analyze to what extent it can
be reused.

Results. Table 1 gives an overview of which syntax arti-
facts are available in each implementation and states the
SLOC per artifact. The Spoofax syntax implementation of
OILXML comprises 365 SLOC of SDF3grammar, and the
Python implementation comprises 1260 SLOC. Spoofax
realizes all artifacts in full from this grammar: a parser, a
pretty printer, origin tracking, and editor services such as syn-
tax highlighting, error recovery, and code completion. The
Python implementation contains a parser and origin tracking
for the full language.Other artifacts are only implemented for
XMLandnot for the expressions insideXML:pretty printing,
syntax highlighting, error recovery, and code completion. To
ensure that our comparison is on two implementations that
cover the same syntactic language, in the Spoofax source
we have withheld the syntactical elements that are not in
Python from counting (31 out of 396 SLOC deducted from
original source; 7.8%) and in the Python source we have
withheld elements that are not in the Spoofax implementa-
tion from counting (46 out of 1306 SLOC deducted from

original source; 3.5%). Of the Python implementation, only
the grammar (202 out of 1260 SLOC) is specific to OIL,
which relates to the metamodel.

Analysis. We analyze our results by first comparing the
total code volumes of both implementations and then com-
pare per syntax implementation artifact.

The results show that the syntax implementation artifacts
of OIL are realized in the Spoofax implementation with a
factor of 0.29 SLOC compared to the Python implementa-
tion. All 365 Spoofax SLOC are OIL-specific. In the Python
implementation, only 202 SLOC is specific to OIL, namely
for defining the metamodel; the rest is reusable for XML-
based languages with embedded expressions. The Spoofax
implementation realizes all syntax artifacts for the full lan-
guage, whereas the Python implementation only realizes the
parser and origin tracking for the full language; the other arti-
facts produced by the Python implementation do not provide
support for expressions. The Spoofax implementation con-
sists of SDF3 only, i.e., the grammar, from which all other
six artifacts are derived. In the Python implementation, most
code is attributed to realizing the parser. For the other arti-
facts, additional code was needed (90 + 205 + 121 = 416
SLOC). In the Python implementation, syntax highlighting
for XML was the only editor service that was available with-
outmanual implementation by using an existingXMLplugin
in Visual Studio.

The Python implementation uses a custom layer on top of
existing libraries for XML parsing (Minidom) and expres-
sions parsing (Pyparsing). First, the Python implementation
uses a metamodel (202 SLOC) and a script that checks
whetherOILmodels conform to themetamodel (344 SLOC).
Second, the Python implementation adds helpers on top of
Pyparsing that prevent repeating low-level grammar patterns
(298 SLOC). Although the custom layer for expressions is
reusable, it is more restrictive than SDF3 as, e.g., it only sup-
ports left associativity. The SDF3 implementation did not use
code in addition to the grammar, which is the main reason
why the Spoofax implementation contains fewer SLOC.

In Spoofax, the OILXML grammar is defined with a total
of 21 SDF3 modules. Out of the 365 SLOC used to define
these modules, about 28% exists purely to compose these
modules. This consists almost only of module name defi-
nitions and import statements. For some grammar modules,
such as those that define the expression grammar, the split up
into smaller modules is beneficial, because it enables reuse
of grammar rules for the other input languages as described
in Sect. 5.2. A third of the grammar modules, however, are
only used once. These modules could have beenmerged with
the modules that use them instead, which would have saved a
few SLOC. We see this difference as negligible, as this only
saves on import statements, which do not directly define the
grammar of the language. In Python, the grammar is defined
in a single metamodel, so no SLOC is used for composition.

123

OIL: an industrial case study in language engineering with Spoofax

Table 1 Code volume (in
SLOC) for the Spoofax and
Python implementations of
OILXML’s concrete syntax,
counted per implementation
artifact

Syntax impl. artifact Spoofax Python

Grammar (excl. expressions)∗ 274 161

Grammar (expressions)∗ 91 41

Parser generator (excl. expressions) 0 344

Parser generator (expressions) 0 298

Pretty printing 0 90

Origin tracking 0 205

Syntax highlighting 0 0

Error recovery Syntactic code completion 0 121

Total (OIL-specific)∗ 365 202

Total (All) 365 1260

∗Indicates OIL-specific artifacts. , implemented; , partially implemented (only for XML, not for expres-
sions)

Pretty printing is implemented manually in the Python
implementation (90 SLOC). This is a generic XML pretty
printer, not specific to OILXML. For expressions, it simply
copies the textual representations of expressions to output
programs. In the Spoofax implementation, pretty printing is
automatically derived based on the formatting of the gram-
mar rules in SDF3. For example, lines 7–16 of Fig. 14 define
the pretty printing of transitions to be spread over multi-
ple lines and with indented child elements. These templates
increase the number of SLOC used for defining the grammar
rule, as without formatting the complete rule could be at a
single line.

Origin tracking (see Sect. 2.3) is generated automatically
from the SDF3grammar. In the Python implementation, ori-
gin tracking is only provided without requiring additional
implementation by the Pyparsing library used for parsing
expressions. For parsing XML, a manual implementation
was needed to realize origin tracking (196 SLOC). The ori-
gins returned by the Pyparsing library used for expressions
are relative. Absolute source locations for expressions are
calculated by adding the relative offsets of expressions to the
parent XML tag content’s source location (9 SLOC, reported
under “Origin tracking” in Table 1).

Syntax highlighting is the only editor service in Python
that is realized without additional effort, using Visual Stu-
dio’s default XML plugin. Note, however, that this only
supports syntax highlighting for the XML part of OIL. For
the expressions inside XML tags, it does not support syn-
tax highlighting. The Spoofax implementation does support
syntax highlighting for the complete language.

The Python implementation realizes error recovery and
code completion for the XML part of the language by gen-
erating an XSD schema from the metamodel. The script that
generates the XSD schema (121 SLOC) is reusable, not spe-
cific to OIL. Given the XSD schema, the editor’s default
XML plugin provides error reporting on invalid XML tags

and it provides code completion. The Spoofax implemen-
tation supports error recovery and code completion for the
complete language without additional implementation, by
automatically generating the editor services based on the
SDF3grammar.

Conclusion. The Python implementation uses less OIL-
specific code to implement OIL’s concrete syntax (meta-
model of 202 SLOC) than Spoofax (SDF3grammar of 365
SLOC). However, whereas Spoofax does not require code in
addition to the grammar to fully implement a range of edi-
tor services, the Python implementation requires additional
code for implementing a parser and other editor services.
This is in spite of the Python implementation making use of
existing libraries for XML parsing and expression parsing
and the Python implementation realizing some editor ser-
vices not for the full OIL language. The code in the Python
implementation, apart from the metamodel, is reusable in
the sense that it is not specific to OIL. The reusable parts of
the Python implementation can be reused for implementing
other languages with XML syntax with a restricted form of
embedded expressions.

Comparing the implementations, including the reusable
parts, the Spoofax implementation realizes all editor services
for the full OIL language using less than one third of SLOC.
Therefore, the results show that it costs less code volume to
implement the artifacts for OIL’s concrete syntax compared
to Python. This is especially the case when, in addition to
only a parser, editor services are required for interactive use
in IDEs.

Discussion. The Python implementation uses, on top of
the existing parsing libraries, a custom layer to support the
implementation of OILXML’s syntax. This custom layer
enables the use of themetamodel and prevents repeating low-
level grammar patterns. Alternatively, OILXML’s syntax
could also have been implemented directly using the exist-
ing libraries. On the one hand, the custom layer is reusable

123

O. Bunte et al.

and costs extra code. On the other hand, the custom layer
saves code by preventing the need to repeat low-level imple-
mentation patterns. Although we cannot make a comparison
with a Python implementation that does not include the cus-
tom layer, we expect that such an implementation could be
smaller than the current Python implementation. An imple-
mentation without reusable parts could be more specific to
OIL and therefore possibly smaller. In the Spoofax imple-
mentation, SDF3 was sufficient to implement OILXML and
OILDSL.

Implementing the parser for OILXML in Python takes
about twice the SLOC as using SDF3. When editor support
is not relevant, one could argue whether the factor two fewer
SLOC is reason enough to start using a language workbench.
However, we expect that the factor is relatively low because
XML syntax is used. By using XML, the existing Minidom
library could be used, but this also imposes the restriction
of only supporting subsets of XML. For custom syntax, e.g.,
for OILDSL, we expect that a Python implementation using
Pyparsing would cost relatively more SLOC than in SDF3,
as a complete grammar needs to be implemented in more
detail. The use of another parser generator library in Python
could bring this closer to SDF3. In Spoofax, the code vol-
ume specific to the OILDSL grammar is actually smaller
than the code volume specific to the OILXML grammar due
to OILDSL being more concise: the Spoofax implementa-
tion contains 219 OILXML-specific SDF3 SLOC and 168
OILDSL-specific SDF3 SLOC.

The grammar of OILXML imposes a few restrictions on
the order of attributes or child elements of an XML element.
This was originally done so that the structure of the derived
AST can be made slightly simpler, resulting in slightly sim-
pler transformations from this AST. To lift these restrictions,
we believe that about 10 SDF3 SLOC would be necessary.
The Python implementation does not have such restrictions.

Part of the Python implementation’s editor services, e.g.,
origin tracking, are implemented only for theweb-based tool-
ing which only statically displays specifications and errors
and does not support editing specifications. Therefore, the
editor services are only used in a static way, in contrast to the
interactive way in IDEs. We expect that extending the editor
services in the Python implementation to have support for
interactive use would cost more code.

6 Abstract syntax

The abstract syntax of a language defines how a language
is represented internally. For textual languages, such as
OIL, this is done by means of AST schemas. Given an
SDF3grammar definition, a corresponding AST schema is
generated automatically. To structure the Spoofax implemen-
tation of OIL, additional intermediate representations have

been defined, which we discuss here. We also describe the
transformation architecture that is shaped around these inter-
mediate representations, specifically focusing on desugaring
transformations and on the resilient-staging framework that
serves as the basis of this architecture, which realize OF2
(Desugaring). Afterward, we discuss how OIL is internally
represented in the Python implementation. Lastly, we evalu-
ate Spoofax on productivity in the context of abstract syntax.

6.1 Intermediate representations

In addition to the AST schemas that are automatically gener-
ated by SDF3 for OILDSL and OILXML, three intermediate
representations (IRs) are defined for OIL:

• Normalized IR A representation that acts as a middle
ground between OILDSL and OILXML while still con-
taining as many syntactic details from both languages as
possible.

• Desugared IR A simplified representation where syn-
tactical details are removed and implicit details are made
explicit to enable concise specification of static seman-
tics.

• Semantic IR A representation that restructures an OIL
specification to ease the implementation of dynamic
semantics (code generation) of OIL.

The use of IRs provides separation of concerns: each IR
is related to a different language implementation aspect. See
Fig. 20 for how the IRs fit in the transformation architecture.
Transformations are defined between the normalized IR and
both the OILXML and OILDSL AST schemas in both direc-
tions so that one can easily switch between OILXML and
OILDSL [41]. Any transformations that follow are indepen-
dent of the concrete syntax used.

To illustrate some differences between IRs, we use the
same transition as the example in Fig. 16. See Fig. 21 for
this transition in the normalized, desugared and semantic IR.
One notable change from OILDSL and OILXML to the nor-
malized IR is that the transition term in the normalized IR
now has fixed subterms instead of a list of terms, which was
done to make it easier to define transformations on it. When
moving to the desugared IR, some optionality is removed
by removing Some wrapper terms and by replacing None
terms with information made explicit, such as Call. When
moving to the semantic IR, transitions are now grouped per
event. This is useful for code generation, as an OIL specifi-
cation is executed by means of sending or receiving events.
Also, the source and target are used to define the transition
pre- and postconditions (with ConditionReference)
and the transition update (with UpdateReference).

123

OIL: an industrial case study in language engineering with Spoofax

Fig. 20 An overview of the transformation architecture of the implementation of OIL in Spoofax. Boxes correspond to AST schemas and arrows
correspond to transformations

Fig. 21 The transition of Fig. 16 in the normalized, desugared and
semantic IR respectively

Fig. 22 The Stratego implementation of the auto-value desugaring
transformation

6.2 Desugaring

Before the normalized IR can be transformed to the desug-
ared IR, a number of desugaring transformations are applied
first. There are a total of 14 desugaring transformations
defined which all use the normalized IR both as input and
output. Most of the desugaring transformations are explica-
tions, which make implicit information explicit. These are
necessary to be able to remove the optionality of terms when
transforming to the desugared IR.

See Fig. 22 for the implementation of one of the (simpler)
explication transformations defined in the Stratego imple-
mentation. This transformation, called auto-value, gives
every state a value if it does not (explicitly) have one. The
rule defined on line 1 traverses top-down over the AST to
try and apply the rule oil-auto-value-term on every
node. This rule, defined on lines 3–5, does the actual expli-
cation: if a state without a value is found (line 4), the value
is added (line 5). It uses the rule defined on line 7, which
creates a fresh name for the state value given the name of the
state.

6.3 Resilient staging

To keep the desugaring transformations simple, they each
have expectations on the input. For instance, desugaring
transformation auto-type that derives new types from the
areas of an OIL specification expects that each state has a
value.Most of these expectations are ensured by other desug-
aring transformations. For instance, auto-value ensures that

123

O. Bunte et al.

every state has a value, which matches the expectation of
auto-type.

To help us structure the desugaring transformations, as
well as the transformation architecture as a whole, a frame-
work that we call resilient staging is used. This framework is
based on stages, which are equipped with a precondition, a
transformation, and a postcondition. Each stage should only
have one specific transformation purpose to keep them well
maintainable and reusable. Stages can be concatenated to
create larger transformations, which we call pipelines.

The precondition represents requirements on the input of
the stage, such as the presence or absence of specific terms
or term patterns. When executing a stage, the precondition is
checked first. If the precondition is met, the actual transfor-
mation will be executed. Otherwise, the pipelines stops and
reports the errors from the precondition. For some stages,
checking the precondition may require work that is useful
for the transformation itself too, such as collecting specific
terms. To prevent duplicate work, the precondition may also
pass data to the transformation if the precondition is met.

After the transformation has been executed, the postcondi-
tion is checked. This postcondition represents requirements
on the output of the stage, effectively testing whether the
transformation was successful. If the postcondition is not
met, the pipeline is aborted and errors are returned. Ide-
ally, postconditions checking should only be enabled during
development, since stages should be correct when used in
production.

In a sense, the pre- and postcondition provide a contract
over the transformation: they define what is required by the
transformation and what can be expected from the transfor-
mation. A clear contract and transformation purpose indicate
how and where transformations should be embedded into
pipelines, also promoting reusability.When a transformation
is used or defined incorrectly, the stage conditions will show
what and where the issue is, hence “resilient” in resilient
staging.

In Stratego, stages are defined using the transformation
rule stage shown in Fig. 23. The three parameters pre,
trans and post are the precondition, transformation and
postcondition, respectively. The precondition and postcon-
dition are transformations too, which return a list of errors,
given an input AST. More on this in Sect. 7.1. Whenever a
condition returns errors, the pipeline is abandoned and the
errors are returned. See Fig. 24 for the instantiation of the
stage of auto-value.

6.4 The Python implementation

In the Python implementation, no intermediate represen-
tations are used. The representation that results from parsing
OILXML is used directly for checks and transformations.
See Fig. 25 for the general transformation architecture. This

Fig. 23 The Stratego transformation rule to define a stage (simplified)

Fig. 24 The creation of the stage for auto-value in Stratego, using
a generic rule stage-preconditions-true, the transformation
from Fig. 22 and a postcondition rule all-states-value

Fig. 25 An overview of the transformation architecture of the imple-
mentation of OIL in Python. The rectangular box is an AST schema,
the wavy box is text, and the arrows are transformations

representation consists of two parts: the AST representation
generated by theMinidom parser and the AST representation
generated by the expression parser. For the Minidom AST
representation, many helper functions have been defined that
hide the use of Minidom, mainly for the access or derivation
of information from it. Many of such information is cached
so that the Minidom AST does not need to be accessed too
frequently. For the expression AST representation, a custom
Expression class is defined that is used to represent any
expression term.

123

OIL: an industrial case study in language engineering with Spoofax

Fig. 26 ThePython implementation of the auto-value desugaring trans-
formation

Desugaring transformations are defined as Python func-
tions that traverse the AST and apply the changes where
necessary. See Fig. 26 for the implementation of auto-value
in Python. It traverses the AST to find all states (line 3). Then
if this state does not have a value (line 4), a new value name
is created based on the name of the state (lines 5 and 7), a
new AST element is created that holds this value (lines 6 and
8), which is then added to the state (line 9).

The Python implementation does not explicitly define pre-
and postconditions per transformation like resilient staging
does, but it does define transformations and conditions on
the AST as separate functions, which are called in a specific
(interleaving) order.

6.5 Evaluation

To evaluate the productivity of implementing abstract syntax,
we look at two evaluation points: AST representations and
desugaring transformations.

6.5.1 AST representations

Question. Does it cost less code volume to define AST rep-
resentations for OIL in Spoofax compared to Python?

Method.We collect all AST representations that are used
in the transformation architecture of an OIL specification in
both the Spoofax and the Python implementation and mea-
sure the SLOC used to define them.

Results. As shown in Fig. 20, the Spoofax implementa-
tion defines seven AST schemas for OIL: OILXML AST,
OILDSL AST, the three IRs, mCRL2 AST and GPL AST.
As shown in Fig. 25, the Python implementation defines one
AST representation. This AST representation is split into two
parts: aMinidomAST representation and an expression AST
representation.

In the Spoofax implementation, all AST schemas, apart
from the normalized and desugared IR, are automatically
derived from their grammar defined in SDF3. The normal-
ized and desugared IR do not have their own grammar and

have their constructors defined inStratego instead.TheirAST
schemas are defined with 43 SLOC and 23 SLOC, respec-
tively, with a shared expression AST schema defined with 33
Stratego SLOC. In the Python implementation, the construc-
tors for the Minidom AST representation are automatically
derived from the Minidom parser. The Expression class
used for the expression AST representation is defined with 9
Python SLOC.

Analysis. If a grammar already exists, the Spoofax imple-
mentation does not need any SLOC to define the AST
schemas as they are generated automatically. This is also the
case in the Python implementation for theMinidomAST rep-
resentation. If the grammar is not available, an AST schema
can be defined in Spoofax with 1 Stratego SLOC per con-
structor, as is the case for the normalized and desugared IRs.
In Python, the expression AST representation only consists
of one constructor, namely a general Expression con-
structor with 7 children, defined with 9 SLOC. Due to this
constructor, the expression AST representation in Python is
more general than the expression AST schema in Spoofax,
as the latter explicitly defines a constructor for each type of
expression. This is also the reason why the expression AST
schema in Spoofax usesmore SLOC than the expressionAST
representation in the Python implementation.

Conclusion. Due to the differences in available AST rep-
resentations, we cannot give a conclusion on the definition
of AST representations. For the AST representation that is
available in both implementations, namely that for expres-
sions, we cannot draw a conclusion either, due to the different
approach for constructors and the small size.

Discussion. The difference between the Spoofax and
Python implementations in the use of IRs is partially due to
the mutability of ASTs. ATerm terms are immutable, so any
desired change to the definition of an AST requires the def-
inition of new constructors. In the Python implementation,
the AST is mutable, so the AST can be changed dynami-
cally. This does have the downside that it is more difficult to
know exactly what information is available at any point in
the transformation architecture. Due to the mutability of the
AST in the Python implementation, it was found during its
development that the definition of explicit IRs would not be
worth the effort for the benefits it could bring over using the
single mutable AST.

An interestingobservation is the difference in the approach
of defining the expressionAST schema between Spoofax and
Python. In Spoofax each type of expression is definedwith an
explicit constructor, while the Python implementation uses
one generic constructor. This is related to the transformation
language available that operates on the ASTs. In Spoofax,
Stratego is used for transformations, where the terms and
their constructors are part of the data language. Having
concisely represented terms therefore also helps keeping
transformations concise. In Python, it is more common to

123

O. Bunte et al.

Table 2 SLOC for the implementation of desugaring transformations
that are defined in both the Spoofax and Python implementation of OIL

artifact Stratego Python

Distribute-groups 41 41

Auto-region 16 31

Auto-super 31 37

Auto-state 127 94

Auto-value 5 34

Auto-variable 39 52

Auto-type 26 31

Auto-init 15 38

Auto-silent 9 18

Reused 42 251

Total (Without reused) 309 376

Total (All) 351 627

reason in terms of classeswith attributes. Since all expression
types have similar attributes, such as a list of subexpressions,
it makes more sense to define one generic constructor.

Though the Minidom AST representation in the Python
implementation is automatically generated, thanks to the
Minidom library, this library canonlybeused forXML-based
languages. It can be expected that for non-XML languages
much more effort is needed to define an AST representation,
which is also the reason why the implementation does not
define IRs. In Spoofax, AST schemas can be defined for any
textual language in an equally productive way.

6.5.2 Desugaring transformations

Question. Does it cost less code volume to define the
desugaring transformations for OIL in Stratego compared
to Python?

Method. We collect all desugaring transformations that
are implemented in both the Spoofax and Python imple-
mentation and measure the SLOC used to implement them.
Any SLOC called by the desugaring transformations, such
as helper functions, are counted too.

Results. Table 2 shows the SLOC used to implement the
desugaring transformations in both implementations. Any
SLOC that are used for more purposes than one desugaring
transformation are captured in the “Reused” row. The body
of reused code in the Python implementation mainly con-
sists of helper functions for traversal through the Minidom
AST representation or for general simple transformations.
The Stratego implementation has less reused code, because
most of such traversals or simple transformations can be com-
pactly expressed with the Stratego language and its standard
library.

Not every desugaring transformation in this table corre-
sponds to one transformation in Stratego and one function
in Python. Desugaring transformation distribute groups cor-
responds to two Stratego transformations and one Python
function, auto-region, auto-variable, auto-type and auto-init
correspond to one Stratego transformation and two Python
functions, and auto-state corresponds to two Stratego trans-
formations and three Python functions.

Analysis. In total, the desugaring transformations are
implemented with Stratego with a factor of 0.56 SLOC com-
pared to Python. On average, not counting reused SLOC, a
desugaring transformation is implementedwithStrategowith
a factor of 0.82 SLOC compared to Python. This difference
is mainly due to the fact that Stratego is specifically tailored
for transformations, it allows one to define transformations
in a more compact way. Stratego does this with ATerm as
the main data format and with the core support for pattern
matching.

We take the implementation of auto-value as an example.
Due toATermasdata format, one can create the resulting state
node by writing the resulting term as the right-hand side of
a transformation rule (Fig. 22 line 5), instead of creating the
new node and text fields step by step (Fig. 26 lines 6–9). Due
to the core support for pattern matching, checking whether
the state has no value and assigning the name of the state to
a variable can be done by just writing the State term with
required subterms (such as None()) and variables (such as
name) as the left-hand side of a transformation (Fig. 22 line
4), whereas in the Python implementation this is done in sep-
arate steps (Fig. 26 lines 4–5). For this example, the default
support in Stratego for creating a fresh name (newname in
Fig. 22 line 7) also helps significantly, as this is implemented
explicitly in the Python implementation with a (not reused)
function of 23 SLOC (called in Fig. 26 line 7).

Deviations from the average SLOC ratio that are more
in favor of the Python implementation are typically in case
of transformations that require less local changes, such as
auto-region, auto-super, auto-state and auto-variable, which
introduce regions, zones, states and variables, respectively,
based on multiple sources of information in the AST. This is
for a few reasons. First of all, it is not possible in Stratego
to access the parent of a term directly. To access such infor-
mation, a top-down traversal is needed that keeps track of
previously encountered terms. Secondly, it is not straightfor-
ward in Stratego to store information globally to reuse later,
which is for instance necessary to make sure that all names
created are distinct. It is possible to use dynamic rules [58] for
this, but the dynamic transformation behavior that these rules
add makes it more difficult to understand how Stratego code
executes when reading it. Lastly, the immutability of ATerm
makes it impossible to store references to parts of the AST.
First collecting information and then transforming this infor-
mation does not have an effect on the resulting AST; instead,

123

OIL: an industrial case study in language engineering with Spoofax

the information needs to be mapped back to the AST to then
transform it, or information collection and transformation
should be intertwined. In Python, these three restrictions of
Stratego are less of a concern due to the freedom one has in
a general-purpose programming language.

An example type of operation used in desugaring that is
affected by the restrictions of Stratego above is finding the
least common ancestor (LCA) of two areas. In the Python
implementation, this is done by walking up the AST from
the two areas using parent pointers until both paths cross. In
Stratego, such a walk along parent pointers is not possible.
Instead, the complete AST is traversed bottom-up in a recur-
sive fashion, where for each area in the tree all descendant
areas are collected. If the two areas for which the LCA needs
to be found are in this collection for the first time, the LCA
is found. An implementation for finding the LCA has similar
SLOC between Stratego and Python, but the implementation
in Python is reused between multiple transformations, while
the implementation in Stratego is not as it is part of the basis
of the desugaring transformation.

The only difference in functionality between the two
implementations are some naming conventions for newly
introduced elements. For instance, in auto-value, the Strat-
ego implementation creates a name that is different from any
name in the OIL specification, whereas the Python imple-
mentation creates a name that is different only fromall literals
in theOIL specification. This choice is sufficient, but requires
one to specifically collect all literals, which contributes to 21
SLOC of auto-value in the Python implementation.

Conclusion.Although there are some restrictions to Strat-
ego that hinder the conciseness of transformations defined in
it compared to Python, on average Stratego requires less code
volume compared to Python to define the desugaring trans-
formations.

Discussion. As mentioned in the analysis, there are some
restrictions to Stratego due to limitations on what it supports
when compared to Python, such as not being able to directly
access the parent of a term. We do not necessarily see these
restrictions as points of improvement however. For instance,
while the immutability of the AST may make it impossible
to store references to terms in the AST, which restricts the
design of transformations, this does make sure that an AST
cannot be transformed indirectly, which is beneficial for the
understanding of Stratego code.

Themeasurements only consider the SLOCused to imple-
ment the functionality of the desugaring transformations, not
the composition of them. In the Spoofax implementation,
they are composed using the resilient-staging framework.
This framework is defined with 63 SLOC, which can be
reused for any language and any transformation architecture.
Creating a stage from a desugaring transformation then costs
one stage transformation rule call, as shown in Fig. 23.
The stages are then sequentially composed. Since the Python

implementation does not implement resilient staging explic-
itly, it does not have this overhead.

7 Static semantics

In this section, we discuss the implementation of static
semantics of OIL in Spoofax, which we consider to con-
sist of name binding, typing and other well-formedness
aspects, which together realize OF3 (Input Correctness).
Name binding and typing are implemented using NaBL2.
Well-formedness is mostly implemented with a collection
of Stratego transformations that produce errors if the con-
straints are violated. In the transformation architecture of
OIL, well-formedness checking occurs on the normalized
IR, while name binding and typing occur on the desugared
IR (see Fig. 20).

We describe how transformations and origin tracking are
used to realize well-formedness checking and how cross-file
and cross-language analysis over a collection of IDL andOIL
files is realized, which relates toOF4 (Language Interaction).
Afterward, we discuss how static semantics is realized in
the Python implementation. We then evaluate Spoofax on
productivity in the context of static semantics.

7.1 Well-formedness checking

OIL specifications need to conform to well-formedness con-
straints. For example, each region should have at least one
state. Although this particular example could have been
enforced in the grammar, not all well-formedness constraints
can be enforced in a grammar, or they lead to messy gram-
mars. Also, by implementing these constraints manually, it is
possible to generate better error messages than generic errors
generated by the parser.

For somewell-formedness constraints, such as illegal vari-
able names and name distinctness, there is core support in
SDF3 andNaBL2 respectively.Other constraints are checked
by means of Stratego transformations, which transform an
AST to a list of errors. Figure 27 depicts a Stratego rule that
implements a well-formedness constraint that says that every
state must have a value. This check is used as the postcon-
dition of the stage of desugaring transformation auto-value,
see Fig. 24. If the check fails, the rule returns a list of errors,

Fig. 27 A Stratego code snippet that checks whether all states have a
value

123

O. Bunte et al.

Fig. 28 A NaBL2 code snippet that checks duplication of module
names

one for each state for which the check fails. Each error is a
tuple that contains both the state term and the error message.

Although the constraint is defined on an IR—and thus
not on the original parsed AST—Spoofax can associate the
error with the original input syntax. This is thanks to origin
tracking. The origin information of a term, that is created
when a specification is parsed, is passed on when this term is
transformed into another term. This makes the origin infor-
mation directly accessible from the termwithin an error tuple.
Spoofax can then use these error tuples to show the error to
the user on the correct syntactical element in the editor.

7.2 Cross-file and cross-language analysis

The implementation of OIL and IDL in Spoofax involves
static analysis that spans both multiple files and multiple lan-
guages. For instance, for a collection of multiple IDL files
it should be checked whether there are no modules defined
with the same name (cross-file analysis, within the same lan-
guage). As mentioned in Sect. 3.2, transitions in OIL refer to
operations defined in IDL files (cross-language analysis).We
discuss how both forms of analysis are implemented using
NaBL2.

Figure 28 depicts anNaBL2 code snippet that enforces the
cross-file constraint that no modules with duplicate names
may exist across IDL files. Line 1 defines the init rule,
which is where the analysis starts. NaBL2 is configured such
that the scopes that is created in theinit rule (line 3) is used
as the initial scope for each IDL file. For IDL files, this scope
is supplied to the rule for IDLModule (line 6), which adds
a declaration of the module to this scope. By attaching the
scopes of all IDLfiles to the single root node, all IDLmodules
are part of a single scopegraph.The restriction that allmodule
names are distinct is definedon line 4,whereD(s)/Module
defines the collectionof allModule elements reachable from
scope s and distinct/name defines that no two elements
in this set may have the same name.

Figure 29 depicts anNaBL2 code snippet that specifies the
cross-language importing of IDL modules into OIL specifi-
cations. First a reference to the module is added to the scope

Fig. 29 A NaBL2 code snippet that imports IDL modules into OIL

Fig. 30 An abstract representation of a merged scope graph of an
OIL specification (O) and two IDL modules (IMi). Rectangles indicate
declarations, circles indicate scopes. SR is the root scope. The scope
associated with the OIL specification (SO), indicated with the dotted
arrow, has the root scope as its parent scope, thereby making the IDL
modules visible from the OIL specification

(line 2), after which it is checked whether the referenced
module can be found (line 3), that is, whether a path from the
reference to the declaration exists in the scope graph. Then
in line 4 all declarations in the module are imported. More
precisely, Module{m}<=== s makes all declarations that
are visible in the scope on which Module{m}was declared
visible in s.

Similar to how multiple IDL files share a single scope
graph, the scope graphs of OIL files could conceptually be
connected with those of IDL files to import the analysis for
importing of Fig. 29. Figure 30 depicts this. However, in
Spoofax it is not possible to implement this directly. Spoofax
only supports configuring NaBL2 to have analysis span mul-
tiple files of a single language, but not the files of multiple
languages. This has been worked around by instantiating a
single language artifact that accepts both IDL and OIL files.
Although the implementation sources of IDL and OIL are
organized in separate projects, there is no distinction any-
more between an IDL and OIL language artifact; for IDL
modules to be usable in OIL specifications, they have to be
in files with the same .oil extension.

7.3 The Python implementation

In thePython implementation, typing of expressions is imple-
mented with a bottom-up recursive algorithm with a case
distinction on the type of operator. For some operators, such
as equality, the process is repeated but with an expected
type. Name resolution is partly done by the type checker and
partly by separate functions.Well-formedness constraints are
defined with separate functions.

See Fig. 31 for how name resolution of import statements
is done in the Python implementation. On line 2, information

123

OIL: an industrial case study in language engineering with Spoofax

Fig. 31 A Python code snippet that imports IDL modules into OIL

on the IDL files is retrieved. This loads the relevant IDL files
and creates a dictionary representing them, if this was not
done already. Then on lines 5–7 the function iterates over all
module names that appear in import statements. It checks on
line 7 if this module name exists and if not, it reports an error
(line 10). On line 11, the list of imported modules is stored
in the OIL specification object for easy access.

Whereas the Spoofax implementation aborts the pipeline
for any stage pre- and postcondition that fails, the Python
implementation can do multiple steps before aborting. When
to abort in case of errors is decided manually, by means
of conditional return statements throughout the sequence
of desugaring transformations and well-formedness checks.
Errors can be shown in theweb interface of the Python imple-
mentation on a textual representation of theOIL specification
thanks to origin tracking. Syntactical elements with errors
are highlighted in red and hovering over them shows an error
message.

7.4 Evaluation

To evaluate the productivity of implementing static seman-
tics, we look at a single evaluation point: the implementation
of static semantics in OIL’s implementations in Spoofax and
in Python. We consider five static semantics artifacts: name
binding, typing, well-formedness, error handling and error
reporting.

Question.Does it cost less code volume to define the static
semantics artifacts for OIL in Spoofax compared to Python?

Method.For thenamebinding, typing andwell-formedness
artifacts that are implemented in both Spoofax and Python,
we measure how many SLOC were used to implement them.
We also measure the SLOC used to abort when errors are
found (error handling) and the SLOC used to show the errors
to the user (error reporting). Any code called by name bind-
ing, typing and well-formedness definitions, such as helper
functions, are counted too.

Results.Table 3 shows the SLOCused to implement name
binding, typing and other well-formedness, as well as error
handling and error reporting in both Spoofax and Python.
Only name binding and typing over syntactic elements that

Table 3 SLOC for the implementation of name binding, typing and
other well-formedness over the syntactic constructs that are defined in
both the OIL and Python implementation

Artifact Spoofax Python

Name binding 128 233

Typing 81 257

Well-formedness 24 57

Error handling 15 29

Error reporting 19 37

Reused 208 298

Total (Without reused) 267 613

Total (All) 475 911

are defined in both the Spoofax and the Python implemen-
tation are considered. Any SLOC that are relevant for more
artifacts than just one out of name binding, typing and well-
formedness are captured in the “Reused” row. All SLOC
under Spoofax name binding, typing and reused are written
inNaBL2.More specifically, NaBL2 code that only relates to
creating and querying the scope graph corresponds to name
binding and NaBL2 code that only relates to type definitions
and type checking corresponds to typing; the rest corresponds
to “Reused”.Well-formedness in Spoofax is a combination of
SDF3, NaBL2 and Stratego. Error handling and error report-
ing are defined in Stratego.

To create a fair comparison, we have not counted any
SLOC that produces functionality that is not in the other
implementation. For the name binding and typing in Spoofax
written in NaBL2, this meant that 88 SLOCwas not counted.
This 88 SLOC includes analysis of syntactic elements not
implemented in Python and typing of elements that is not
done in Python, such as areas and operations. For the name
binding and typing by the type checker of the Python imple-
mentation 101 SLOC was not counted, which consists of
analysis of syntactic elements and other checks not done
in the Spoofax implementation. Since the well-formedness
constraints are implemented as separate rules in Spoofax or
functions in Python, we can measure them separately. Only a
few well-formedness constraints have been measured, since
many do not correspond well to any constraint in the other
implementation.

Analysis. As Table 3 shows, name binding, typing and
other well-formedness are implemented in Python in about
double the SLOC compared to Spoofax. In general, the lower
SLOC for Spoofax can be explained by the fact that themeta-
DSLs that are used, especially NaBL2, are specifically made
for the implementation of these aspects.

Only looking at SLOC specific to name binding, the
Spoofax implementation uses a factor of 0.55 SLOC com-
pared to the Python implementation. In NaBL2, SLOC
specific to name binding consist of creating and querying the

123

O. Bunte et al.

scope graph. In Python, this involves reading in IDL files,
creating classes for easy access to information in IDL files,
checking name binding by querying this information and that
of the OIL specification, and adding name binding informa-
tion to the AST. The last two cause the main difference in
SLOC between NaBL2 and Python. Checking name binding
in NaBL2 is done by adding the reference to the scope graph
and then checking for a path to the declaration as shown in
lines 2–3 in Fig. 29. How this declaration is found does not
need to be implemented explicitly, while in Python all dec-
larations are retrieved manually to explicitly check whether
the relevant declaration exists. Adding name binding infor-
mation to the AST also needs to be explicitly implemented
in Python, while this implicitly happens in NaBL2 by having
a constraint rule for every term.

Looking only at typing-specific SLOC, the Spoofax
implementation uses a factor of 0.32 SLOC compared to
the Python implementation. For both implementations, most
of the SLOC are in the typing of expressions. One of the
main reasons that the Python SLOC is higher than theNaBL2
SLOC is that in Python there are some binary operators, such
as equality and assignment, for which many case distinctions
are defined based on the types of operands they can have. In
NaBL2 these case distinctions are not necessary as they hap-
pen implicitly.

Looking only at well-formedness-specific SLOC, the
Spoofax implementation uses a factor of 0.42 SLOC com-
pared to the Python implementation. This is partly due to
core support for some specific forms of well-formedness in
Spoofax, such as rejecting specific variable names and check-
ing for distinctness of names within a scope. Such checks
only take 1 SLOC in SDF3 and NaBL2, respectively, see
Fig. 28 for an example, whereas in Python these require
explicit traversal of the AST. Other well-formedness con-
straints inSpoofax are implemented inStratego, forwhich the
same productivity conclusions hold as for desugaring trans-
formations (Sect. 6.5).

For error reporting and error handling, the Spoofax imple-
mentation uses about half the SLOC compared to the Python
implementation. The difference in error handling SLOC is
because the Spoofax implementation has a generic way of
aborting pipelines built into the resilient-staging framework,
while in the Python implementation abort points are places
manually, which produces code duplication.

Both implementations support two types of error report-
ing: by means of highlights on the original specification or
by means of a list of errors. For the first, the Spoofax imple-
mentation only needs minor general configuration, while
the Python implementation explicitly locates and colors the
syntactical elements in an HTML generator specific for
XML-based languages. For the second, both implementa-
tions support a generic way of displaying the list of errors.

For both implementations, a large portion of the SLOC
are reused. The reused SLOC in Spoofax is only relevant for
static analysis: 174 SLOC consists of constraint rule decla-
rations that define how name binding and typing information
is related between a term and its subterms, and 34 SLOC is
related to naming and importing modules. The reused SLOC
in Python consists mainly of parts of the type checker that
also involve variable reference resolution, as well as helper
functions that retrieve information from the OIL and IDL
specifications, which are also used for more purposes than
only static semantics.

Conclusion. For static semantics, the Python implemen-
tation uses about twice the amount of SLOC compared to
the Spoofax implementation, for the same functionality, with
or without considering reused SLOC. This is mostly due
to the fact that NaBL2 is specialized for name binding and
typing and because of core support for specific types of well-
formedness. Error handling and reporting can also be defined
in a more concise and generic way. This shows that it costs
less code volume to implement the static semantics artifacts
for OIL in Spoofax compared to Python.

Discussion. Like with the concrete syntax definition, the
name binding and type checking of IDL and OIL in the
Spoofax implementation are split up into multiple NaBL2
modules, 21 in total. Unlike with the concrete syntax defini-
tion, NaBL2 files do not need import statements to compose
them.AllNaBL2files in a project are deemed relevant and are
collected automatically, so no SLOC is needed to compose
NaBL2 modules. An exception to this is the composition of
OIL-specific analysis with IDL analysis, which costs about
12 SLOC. This includes project configurations to export the
IDL NaBL2 definitions as well as imports of IDL type sig-
natures and files generated from the IDL NaBL2 definitions.

The workaround to make it possible to do name resolution
between IDL and OIL files did not cost any extra NaBL2
SLOC. It did, however, cost 26 extra Stratego SLOC (not in
Table 3) to define transformation rules that checkwhether the
given AST is an IDL or OIL specification, which are needed
at the beginning of end-to-end transformations.

A big reason for the conciseness of NaBL2 is that it is a
declarative language, which means that one does not imple-
ment how the program executes. This can, however, also
make it unpredictable how the NaBL2 analysis is executed.
For example, when a reference of an integer type is used at a
location where a Boolean is expected, the type error could be
reported on the declaration of the integer variable, while the
error is expected on the reference. Although NaBL2 specifi-
cations can be annotated to indicate a preference for reporting
the error on the declaration, this does not cover all cases.

The implementation of name binding and typing in
Spoofax also automatically provides some editor services.
When hovering over a syntactical element in the editor, its
type is shown in a small text box. Also, navigating through a

123

OIL: an industrial case study in language engineering with Spoofax

reference moves the cursor to the corresponding declaration,
even if both are in different files. The Python implementation
does not provide these editor services.

8 Dynamic semantics

OIL is a language for defining the behavior of control soft-
ware. What the actual behavior is of an OIL specification
is described by its dynamic semantics, which is formally
defined in [50]. This semantics is implemented in Spoofax
using Stratego with two code generators: one for verifica-
tion (mCRL2) and one for execution (C++). These together
realize OF5 (Multiple Targets).

Like OIL, mCRL2 is a language for describing system
behavior, except that it is based on process algebra [45].
It also comes with a toolset [59], containing all kinds of
model checking functionalities, such as checking properties
and checking behavioral equivalence, as well as tools to sim-
ulate and visualize the behavior of an mCRL2 specification.
With this translation from OIL to mCRL2, the functionality
of the mCRL2 toolset can be indirectly used for OIL spec-
ifications as well. Some early results of this were already
presented in [50].

To actually use an OIL specification to implement a soft-
ware system, executable code needs to be generated. For that
reason, a translation fromOIL toC++was implemented. This
translation is inspired by the C++ generator in the Python
implementation, which was already used for some systems
in development at Canon Production Printing.

We highlight three parts of the implementation of these
two translations in Spoofax: how the implementation of
dynamic semantics is split into many projects, how static
analysis results are queried for use in transformations and
how configurability of a translation is handled. Afterward,
we discuss the implementation of these translations in the
Python implementation. We then evaluate Spoofax on pro-
ductivity in the context of dynamic semantics.

8.1 Division into projects

As is already discussed in Sect. 6 and shown in Fig. 20,
an OIL specification is first transformed to the semantic
IR in the Spoofax implementation before it is transformed
into mCRL2 or GPL code. For the sake of extensibility, the
semantic IR, mCRL2 and GPL are all defined in separate
projects, as well as the transformations between them. See
Fig. 32 for the hierarchy of these projects, where the SEM
project defines the semantic IR. All projects in this hierar-
chy are part of the Spoofax implementation except for the
mCRL2 project, which already existed for other purposes.

The translation to GPL defined in OIL2GPL does not
translate directly to C++, but to an intermediate representa-

tion called the GPL IR first instead. The GPL IR is a pseudo
code representation defined in the GPL project with basic
object oriented imperative programming language constructs
such as classes, methods, basic statements and expressions.
The GPL project then defines a translation from the GPL IR
to C++ files. The reasoning behind the creation of the GPL
IR is to make it relatively simple to add translations to other
general-purpose programming languages: only a transforma-
tion from the GPL IR to that programming language needs
to be implemented.

See Figs. 33 and 34 for how the GPL IR splits up the
transformation of an enum declaration to C++. In Fig. 33, an
enum type declaration of the semantic IR is transformed to an
enum type declaration of theGPL IR, which changes the type
name using the name of the OIL specification and the orig-
inal type name. In Fig. 34, for every enum type declaration
(line 3), a C++ enum class is created (line 8–10). While most
transformations in the Spoofax implementation of OIL are
model-to-model transformations, the transformation from
the GPL IR to C++ is a model-to-text transformation, as can
be seen by the use of templates. This way, it is not necessary
to define the C++ syntax in Spoofax.

8.2 Using static analysis results

WhenNaBL2 name binding and typing have been applied on
an AST, all terms in the AST are annotated with information
that stores the results of the analysis. This information can
then be used in Stratego transformations bymeans of specific
transformation rules. For instance, the type of a term can
be extracted with the rule nabl2-get-ast-type. See

Fig. 32 A project extension graph of projects used for code generation
in the Spoofax implementation. Boxes correspond to projects. Arrows
mean “extends”

Fig. 33 The Stratego transformation of enum declarations from the
semantic IR to the GPL IR

123

O. Bunte et al.

Fig. 34 The Stratego transformation of enum declarations from the
GPL IR to C++

Fig. 35 A Stratego transformation rule that transforms a term to one
that represents its type in mCRL2

Fig. 36 TwoNaBL2 code snippets: one that stores the declaration of an
enum type inside its type (simplified) and one that defines type inference
for type references

Fig. 35 for a (partial) definition of a transformation rule that
uses this rule. Given a term with type information, such as a
variable reference term, it returns a term that represents its
type in the mCRL2 AST schema. The terms starting with T
correspond to the type as annotated by NaBL2.

It is possible in NaBL2 to annotate the AST with more
information than the default name binding and typing results.
Scope graph nodes can be given properties, which can store
any term.We use this, for instance, for retrieving the declara-
tion of an enum type, defined in an IDL specification, when
we generate code for an OIL specification that has a refer-
ence to this enum type. See Fig. 36 for an example, where
the declaration of an enum type in an IDL specification is
stored in its scope graph declaration node Type{name}
with a property decl (line 3). This declaration node is then

Fig. 37 A Stratego transformation rule that uses the scope graph node
stored in the type of an enum variable reference to obtain the declaration
of the corresponding enum type

stored within the TEnum type enum_ty of the enum (line
4). Whenever a reference to this enum type in the OIL spec-
ification is encountered (line 8), we add a reference node to
the scope graph (line 9) and try to resolve it (line 10) like
discussed in Sect. 7.2. If successful, the TEnum type ty of
the enum type reference (line 8) is inferred from the enum
type declaration d by requiring that d also has type ty (line
11). Since property decl is stored within this TEnum type,
the property becomes available in the context of the enum
type reference in the OIL specification.

See Fig. 37 for a Stratego transformation in which the
property is retrieved from an enum type reference, which is
part of the translation from an OIL specification to mCRL2.
First the type of the type reference is extracted (line 5), after
which the decl property is queried on the node within the
type, which provides the enum type declaration (line 6).
This enum type declaration can then be translated to one
in mCRL2 (line 2, details not shown).

8.3 Configurability of themCRL2 generator

The translation to mCRL2 has a number of configuration
options. Some of these options are mainly useful for debug-
ging the translation during development, but other options
result in a significantly different output. For instance, one
option mainly used for debugging is whether to use aux-
iliary variables in the generated mCRL2 specification that
help enhance its readability. Since these options change
how the mCRL2 specification should look like, they con-
figure the transformation that generates mCRL2. One way
to implement this in Stratego is by passing the configuration
information on as parameters of transformation rules. How-
ever, the more complex a transformation becomes and the
more deeply nested this information is used, the more clut-
tered with such configuration parameters the transformation
becomes. A solution in many languages would be to define
global variables that hold this information, but Stratego does
not support global variables.

Instead, dynamic rules [58] are used. A dynamic rule is
a transformation rule that is created during transformation
time, whose behavior can depend on the status of the trans-

123

OIL: an industrial case study in language engineering with Spoofax

Fig. 38 The creation of dynamic rules in Stratego for the auxiliary
variables configuration

Fig. 39 An example Stratego transformation rule where the dynamic
rule mcrl2-aux-vars is used

formation at that time. Such rules are used for configuration
by creating a dynamic rule for each value of a configura-
tion option, which always succeeds if the value was chosen,
otherwise it always fails. For Boolean configuration options
one dynamic rule suffices. These rules can then be usedwher-
ever the differences between configurations have effect on the
transformation,without having to pass anything on explicitly.

See Fig. 38 for a Stratego rule that creates the dynamic
rule mcrl2-aux-vars for the auxiliary variables con-
figuration, which is done just before the transformation
from the semantic IR to mCRL2 is applied. The parameter
aux-vars stores whether the user has chosen to intro-
duce auxiliary variables. This parameter is then used in
a ternary operator of the shape s1 < s2 + s3, which
acts similarly to an if-then-else. If aux-vars is true,
the dynamic rule mcrl2-aux-vars is defined as a rule
that always succeeds (t -> t), else as one that always
fails (_ -> <false>). See Fig. 39 for an example where
this dynamic rule is used during the transformation to
mCRL2. If the user chose for the introduction of auxiliary
variables, the precondition of a transition in the mCRL2
process should be represented with an auxiliary variable
(sem2mcrl2-firedvar), otherwise the full transition
precondition is used (sem2mcrl2-trans-pre).

8.4 The Python implementation

The Python implementation also defines a translation to
mCRL2 and a translation to C++. The translation to mCRL2
in thePython implementationwas createdduring an exploratory
study on the semantics of OIL and is therefore only a pro-
totype. Compared to the Spoofax mCRL2 generator, the
Python mCRL2 generator supports slightly fewer OIL lan-
guage constructs and it can only generate mCRL2 code for
single components, whereas the Spoofax mCRL2 generator
can also generate mCRL2 for systems of components. On the
other hand, the Python C++ generator has been maintained
and refined for years and has been used to generate C++
for systems used in production. Compared to the Spoofax

Fig. 40 The Python transformation for enum declarations

C++ generator, the Python C++ generator supports slightly
more OIL language constructs and it is built to fit into Canon
Production Printing’s software base. This includes adherence
to coding standards and a higher level of configurability of
the generated C++ code, such as allowing multiple types
of schedulers to execute the specification, which is not sup-
ported in the Spoofax C++ generator.

Both the Python mCRL2 generator and the Python C++
generator are defined in their own files in the Python imple-
mentation. Since the Python implementation does not have
any explicit IRs, both generators directly transform the
(desugared) OIL specification to the desired target. See
Fig. 40 for an excerpt of the Python C++ generator that trans-
forms an enum declaration to C++. First all declared enum
types are collected from the desugaredOIL specification (line
1), after which a C++ enum class is printed line by line for
each enum type (lines 2–9).

The codegenerators inPython also support the use of static
analysis results and configurability. Static analysis results and
properties are stored by dynamically adding new fields to the
classes that represent terms. This information can then be
accessed directly when needed. Configuration options are
stored globally, which can be directly accessed from any-
where in the translation.

8.5 Evaluation

To evaluate the productivity of implementing dynamic
semantics, we look at a single evaluation point: the imple-
mentation of code generation. More specifically, we look
at the mCRL2 and C++ generators that are available in the
Spoofax and Python implementation.

Question. Does it cost less code volume to define code
generation for OIL in Spoofax compared to in Python?

Method. We measure the SLOC of the code generators
used to transform a desugared and analyzed OIL specifica-
tion to mCRL2 and to C++. Any SLOC called by the code
generators, such as helper functions, are counted too.

Results. Table 4 shows the SLOC used to implement the
mCRL2 and the C++ generator in both Stratego and Python.
Any SLOC that are used for more purposes than one code
generator are captured in the “Reused” row.

123

O. Bunte et al.

Table 4 SLOC for the implementation of the mCRL2 and C++ gener-
ator in both the Spoofax and Python implementation of OIL

Artifact Spoofax Python

mCRL2 generator 689 531

C++ generator 705 1321

Reused 508 369

Total (Without reused) 1394 1852

Total (All) 1902 2221

Because the exact differences in functionality (of gener-
ated code) between the two implementations andwhat SLOC
attributes to these differences is very complex to measure,
we decided to measure the SLOC of the code generators in
full. This complexity is due to multiple factors. One is that
structure of the code generators is very different: the code
generators in Spoofax are split up into multiple transforma-
tions between IRs, while the code generators in Python do
a direct translation from a (desugared) OIL specification to
the target. Another is that code generators do not almost only
differ in syntactic OIL constructs they support, as is the case
for concrete syntax and static semantics, but also what they
support in the functionality of the generated code, which is
much more difficult to compare accurately.

The Spoofax implementation of the mCRL2 generator
consists mainly of Stratego code from the OIL2mCRL2
project (689 SLOC). This code generator also uses the
mCRL2 project (373 SDF3 SLOC), but since this project
already existed outside the scope of our project, we do not
include the SLOCmeasurements of this project in our results.
The Spoofax implementation of the C++ generator consists
mainly of Stratego code from theOIL2GPLandGPLprojects
(389+151 SLOC) and SDF3 code for defining the grammar
of the semantic IR from the GPL project (165 SLOC). The
reused code in the Spoofax implementation consists mainly
of SDF3 code for defining the grammar of the semantic IR
from the SEM project (164 SLOC) and Stratego code for
various helper transformations used by more than one code
generator. The mCRL2 and C++ generators in the Python
implementation are both implemented in separate files. The
shared Python code consists of helper functions that are used
for both code generators.

Analysis. The Spoofax mCRL2 generator uses a factor of
1.3 SLOC compared to the Python mCRL2 generator. The
SpoofaxC++generator uses a factor of 0.39SLOCcompared
to the Python C++ generator. A big reason for the difference
in SLOC ratio of the two code generators is the difference
in maturity. The Python mCRL2 generator and the Stratego
C++ generator are prototypes that only implement basic code
generation. The Stratego mCRL2 generator and the Python
C++ generator have more functionality and have been main-
tained extensively compared to their prototype counterpart.

Diving deeper into the code generators shows that a big
difference between the Stratego and the Python implementa-
tion is in the use of IRs. In the Spoofax implementation, the
code generator consists mainly of model-to-model transfor-
mations. The actual target syntax is created using the pretty
printer that is automatically generated from the syntax in case
of the mCRL2 generator, and using a model-to-text transfor-
mation from GPL in case of the C++ generator (see Fig. 34).
In Python, no IRs are used: the target code is printed line by
line while using the (desugared) Minidom AST of the OIL
specification to collect information (see Fig. 40).

The use of IRs does comewith the overhead of defining the
IRs. Both IRs have been defined bymeans of SDF3grammar;
the semantic IR uses 164 SLOC and the GPL IR uses 165
SLOC. These could have been implemented with fewer
SLOC if implemented with signatures in Stratego like with
the normalized and desugared IR, as only these signatures
are necessary for the transformation. With 52 constructors
for the semantic IR and 44 constructors for the GPL IR, the
signatures could be implemented with 1 SLOC per construc-
tor. The difference in SLOC compared to SDF3 ismainly due
to the syntax needing lexical elements, needing priority defi-
nitions and the definition of some constructors in SDF3 being
spread overmultiple lines for better pretty printing. However,
using SDF3 for this does give the benefit of having a readable
syntax and the automatic generation of a pretty printer, which
has been proven useful when debugging transformations.

Concerning the comparison of using Stratego over Python
for the actual transformation, the same benefits and down-
sides as for desugaring transformations hold here. Stratego’s
use of ATerm as data format and its core support for pattern
matching helps writing transformations in a concise way,
but its not possible to directly access the parent of a term
and the immutability of ASTs makes it impossible to create
(global) references to parts of an AST. Given the structure of
the transformations for the code generators, where the input
AST is only used to collect information and the target AST is
built up from scratch, these downsides have less of an effect
here compared to desugaring, where information collection
and transformation is done in the same AST. Specifically for
code generators, there is another small downside of using
Stratego over Python in the form of the use of properties. In
the Python implementation, due to the mutability of the AST,
properties can be added and extractedwith a single operation.
In the Spoofax implementation, as shown inSect. 8.2, Fig. 37,
multiple operations are necessary to retrieve the declaration
of an enum type.

The reused Python code mainly consists of general
helpers for information collection, AST traversal and code
generation. The reused Stratego code mainly consists of
transformations to and on the semantic IR, which include
calculation steps necessary for the semantics of OIL, such
as computing transition pre/postconditions. In the Python

123

OIL: an industrial case study in language engineering with Spoofax

implementation, these calculation steps are done separately
in both code generators, resulting in some code duplication.
This code duplication could have been avoided by creating
more shared helper functions, reducing the total amount of
SLOC.

The modularity that comes with splitting up the code gen-
erators in the Spoofax implementation into multiple projects,
as shown in Fig. 32, also comes with a cost in SLOC. To con-
figure the projects such that they extend each other, 31 SLOC
is used. Since the code generators in the Python implemen-
tation are defined in a single file, no SLOC is needed for
anything similar.

Conclusion. To implement an mCRL2 and a C++ genera-
tor, the Spoofax implementation uses a factor of 0.86 SLOC
compared to the Python implementation (a factor of 0.75
when not counting reused SLOC). With the differences in
functionality between the Spoofax and Python code gen-
erators in mind, we cannot not draw a conclusion on the
definition of code generators.

Discussion. The use of annotated information was one
of the things that was most difficult to get working cor-
rectly. Because the information is stored on scope graph
nodes instead of the terms itself, the information is not easily
retrievable.With the NaBL2 interface for Stratego, it was not
possible to extract the scope graph nodes that belong to a term
directly from this term. Some ideas for NaBL2 properties,
such as whether a variable reference refers to one declared in
an OIL specification or an operation parameter, were never
implemented due to this. The idea to put the scope graph node
inside a type as described in Sect. 8.2 is actually more of a
workaround, as the type of a term is easily retrievable with
the NaBL2 interface. We are not sure whether this is an issue
of the NaBL2 interface or of the lack of documentation on
it. In Statix, the successor of NaBL2, properties are directly
associated with terms instead of scope graph nodes, which
alleviates this issue.

A benefit of the model-to-model approach with IRs is
reusability of transformations. A good example of this is
the definition of C++ methods. In the Stratego implemen-
tation, C++ methods are created by defining GPL methods
first. Only a single transformation rule needs to be defined
to translate a GPL method to a C++ method. In the Python
implementation, the syntactical details of each method are
repeated every time a new method is defined.

Another benefit of using IRs is that it is good for the exten-
sibility of the implementation. Adding a Java generator to
the Stratego implementation only requires a translation from
GPL to Java in the GPL IR project, which reuses the trans-
formation to the semantic IR and the transformation from the
semantic IR to the GPL IR (389 out of 540 SLOC of the C++
generator in Table 4). In the Python implementation, a new
transformation from a desugared OIL specification would
need to be defined. This is assuming that the GPL IR is capa-

ble of representing all Java constructs that are necessary for
the resulting output. If that is not the case, adjustments need
to be made to the GPL IR and any transformation to and on
it.

9 Evaluation

In this section, we summarize the main findings for our
research question and we discuss their threats to validity.

9.1 Summary

RQ: How does the productivity of implementing an
industrial language in Spoofax compare to the produc-
tivity when using a GPL and available libraries?

To answer this, we have measured and compared the code
volume used to implement language engineering artifacts
in the Spoofax and Python implementations of OIL. Both
evaluated implementations are complete, in the sense that
all five desired OIL features as described in Sect. 3.3 are
realized, except for OF1 (Multiple Syntaxes). OF1 is not
implemented in the Python implementation, which is why
we only compared SLOC for OILXML. For concrete syntax,
abstract syntax, and static semantics we compared artifacts
produced byboth implementationswith similar functionality.
For dynamic semantics, we could not make a clear compari-
son between the Spoofax and the Python implementation due
to the large difference of maturity of the mCRL2 and C++
generators of the two implementations.

For concrete syntax, the Spoofax implementation uses a
factor of 0.29 SLOC compared to the Python implementa-
tion. This difference is mainly caused by the fact that most
concrete syntax artifacts are automatically generated from
the SDF3grammar definition in Spoofax, while in Python
they are manually implemented, though reusable for other
XML-based languages. When not counting these reusable
parts, the Spoofax implementation uses a factor of 1.81
SLOC instead compared to the Python implementation.

For abstract syntax we considered AST representations
and desugaring transformations. Since the ASTs are repre-
sented very differently in both implementations,we could not
derive an insight. Comparing the code volume for desugaring
transformations, we found that the Spoofax implementation
using Stratego uses a factor of 0.56 SLOC compared to
the Python implementation (a factor of 0.82 SLOC when
not counting reused SLOC). The difference is mainly due
to Stratego’s core support for pattern matching on ASTs,
although the immutability of ASTs in Spoofax can be incon-
venient when specifying transformations.

123

O. Bunte et al.

For static semantics the Spoofax implementation uses a
factor of 0.49 SLOC compared to the Python implemen-
tation. Especially NaBL2’s declarative nature, where name
binding and typing are defined by means of scope graph and
constraint generation rules, helps with keeping the imple-
mentation concise.

In summary, for concrete syntax, desugaring transforma-
tions and static semantics, the code volume used in Spoofax
was about a factor 0.5 or less compared to Python. This is
mainly due to the availability of meta-DSLs that are tailored
to implementing language development aspects and to gen-
erating editor services.When not counting reused SLOC, the
results are somewhat more favorable for the Python imple-
mentation. Since the comparison is on two implementations
covering similar functionality, the results are an indication
that it is more productive to implement OIL in Spoofax than
in Python.

9.2 Threats to validity

We discuss threats to our study’s construct, internal, and
external validity. We discuss using code volume as proxy
for productivity both as construct- and internal validity.

9.2.1 Construct validity

Construct validity concerns to which extent our code volume
measurements actually assess productivity. As threats to con-
struct validity, we discuss using code volume per artifact as
proxy for productivity and bias in artifact selection.

9.2.2 Code volume per artifact as proxy for productivity

Using code volume per artifact as a proxy for measuring
productivity is a controversial measure [51–54] and a threat
to construct validity. Especially for measuring absolute pro-
ductivity the measure is controversial, as many other factors
could have influenced the effort it took to create an imple-
mentation. For example, developers can spend themajority of
their time on program comprehension and only a small por-
tion on writing code [60]. In general, to mitigate the threat
of using code volume per artifact as a proxy, we use the
code volume measurements to compare two implementa-
tions, not to derive absolute productivity numbers. Second,
both implementations already existed before the evaluation,
which counters the threat that one implementation could have
been optimized in terms of code volume to get better eval-
uation results. Third, in each evaluation we aim to compare
parts of both implementations that cover the same function-
ality.

A threat that remains is that implementing aDSL is not just
about writing lines of code, but also about the time needed to
understand how to do sowith the implementation language(s)

available. The average time per SLOC is influenced by the
experienceof the developer and the language that is used, e.g.,
Python is more commonly known than Spoofax and its meta-
DSLs. Also, earlier experience with language engineering
or compiler construction is beneficial. From our experience,
especially NaBL2 requires considerable time to learn. The
Master students that contributed to the project seemed to
pick up Stratego rather quickly.

We will now discuss using code volume as proxy for
productivity inmore detail for specific language aspect evalu-
ations. In the concrete syntax evaluation, the original Spoofax
and Python implementations did not cover the exact same
syntactic languages. For example, this is due to the Spoofax
implementation still containing some language constructs
that have been removed from the Python implementation. To
increase the fairness of our comparison, we have subtracted
the lines of code for syntactical elements that are not present
in the other implementation. In the Spoofax implementation,
this was 31 out of 396 SLOC (7.8%). In the Python imple-
mentation, this was 46 out of 1306 SLOC (3.5%). Compared
to the productivity comparison outcomes, these differences
are inconsequential.

From the abstract syntax evaluation we take Fig. 26 as
an example. The desugaring rule auto-value in the Python
implementation could havebeen implementedusing list com-
prehension to domultiple steps on the same line of code. This
would reduce the lines of code but would also make the code
more complex to understand. These threats are mitigated by
the fact that both implementations have been created without
the goal of evaluating them, let alone optimizing the lines
of code, rather than with the goal of being correct and well
maintainable.

9.2.3 Bias in artifact selection

In our evaluations, wemeasure code volume for a selection of
artifacts; our selection of artifacts could be biased. This raises
the question how representative the selected artifacts are for
thewhole implementations and thereby is a threat to construct
validity. Since for every language aspect the selected artifacts
cover almost the whole implementation, we think this threat
is negligible.

Next to the implementation of OIL in Spoofax’s meta-
DSLs and in Python, an implementation of a DSL also
contains other code for, e.g., configuration and the build
system. We have not included these in the measurements,
which could make our measurements less representative for
the whole implementations. From our experience, the code
spent on configuration and build specification is so little that
we do not expect the outcomes of our study to be different if
they were included.

Both implementations contain code that is specific to some
artifact and code that is reused for multiple artifacts. Some

123

OIL: an industrial case study in language engineering with Spoofax

reusable code can even be used beyond OIL, which is espe-
cially the case for the implementation of concrete syntax in
Python. Since reusability of code impacts productivity, we
measure reused code separately and discuss how reusable the
code is.When comparing both implementations, we compare
both with and without reusable code.

9.2.4 Internal validity

Internal validity concerns to which extent our measurements
actually represent the effect on productivity, and cannot be
causedbyother factors. For internal validity,wediscuss using
code volume per artifact as proxy for productivity, design
decisions, confirmation bias, and experience of developers.

9.2.5 Code volume per artifact as proxy for productivity

In the static semantics evaluation, not much SLOC has been
measured for well-formedness compared to name binding
and typing, because not many well-formedness constraints
were implemented in Spoofax and most of those that are,
do not correspond well with constraints in the Python
implementation. One of the main reasons for this is that
well-formedness was not a high priority during the develop-
ment of OIL in Spoofax. Therefore, we cannot give a strong
indication regarding the productivity of implementing well-
formedness.

9.2.6 Interdependence of implementations

Both implementations were not created entirely indepen-
dently from each other. The Python implementation was
already well maintained when we started with the Spoofax
implementation. When developing the Spoofax implementa-
tion, the Python implementation was used to determine what
should be implemented, for instance,which desugaring trans-
formations are necessary andwhat the code resulting from the
C++ code generator should look like. However, the Python
implementation was not used to determine how things should
be implemented in the Spoofax implementation. The meta-
DSLs of Spoofax differ from Python so much that there is no
clear translation from Python to a meta-DSL, or vice versa.
Therefore, we believe that the SLOCmeasured in one imple-
mentation are independent of theSLOCmeasured in the other
implementation.

9.2.7 Design decisions

During the implementation of a DSL, several design deci-
sions are made that influence the implementation. Therefore,
particular design decisions can have influenced the outcomes
of our study. We have countered this threat by taking two
implementations of the same language that are realized inde-

pendent of our evaluation, i.e., the implementations already
existed before this evaluation was started.

The question remains whether the conclusions could have
been different given totally different design decisions. For the
Spoofax implementation, we think different design decisions
would not lead to very different conclusions, as Spoofax and
its meta-DSLs steer design decisions, leaving little design
decisions to the language engineer. Also, several design
decisions that were made in the Spoofax implementation,
such as using language composition and many modules
for code organization, came with overhead increasing the
counted SLOC. For the Python implementation, we think
many design decisions could have been made very differ-
ent, which can steer the implementation to use more or less
lines of code, which is a threat to internal validity. Given the
nature of our study, where we focus on a complex industrial
case, we think this threat is justified. Although all the ser-
vices of Spoofax could be re-implemented using Python and
offered as reusable code, that is not what typically happens as
it would be over-design from the perspective of developing
a single language.

9.2.8 Confirmation bias

Some of the authors have contributed to the Spoofax and
Python implementations of OIL, which raises a concern
regarding confirmation bias. We have mitigated the risk of
confirmation bias in the following ways, which prevents the
possibility for authors to, during the study, change the imple-
mentations or steer evidence in a way that supports prior
beliefs. First, we have chosen a fixed version of the Spoofax
and Python implementations of OIL from a moment before
the SLOC measurements started. Second, while code mea-
surements are conducted by a single author, at least one other
author has checked these measurements. Third, the authors
involved in the implementations of OIL had many discus-
sions to ensure that code measurements cover those parts of
the implementation to make comparisons as fair as possible.

9.2.9 Experience

Not all developers that worked on the Spoofax imple-
mentation were familiar with Spoofax and its meta-DSLs.
Therefore, it could be that themeta-DSLswere not used opti-
mally, and code is unnecessarily large at some points in the
implementation. We do not expect this to have large impact
on the outcomes of our study. For the Python implementation
this is not much of an issue as it is a language (paradigm)
that the developers were more experienced with.

123

O. Bunte et al.

9.2.10 External validity

External validity concerns to which extent our findings are
generalizable to other language workbenches, comparison
to other GPLs, other DSLs, and other contexts. Our study
focuses on a particular language workbench (Spoofax), a
comparison with a particular GPL (Python), a particular
DSL (OIL), and a particular context (the industrial context
of Canon Production Printing). Therefore, it is unclear to
what extent our findings also hold for other language work-
benches, comparison to other GPLs, other DSL cases, and
other contexts, as a specific case study is not easy to general-
ize. OIL’s implementations in Spoofax and Python cannot be
published due to confidentiality reasons, which hinders the
reproducibility of our study.

9.2.11 Generalizability of Python

The Python implementation heavily relies on object-oriented
programming and the availability of, e.g., parsing libraries.
These aspects are not uncommon for other GPLs and
therefore we expect that our findings can be similar for com-
parisons to other GPLs. Features that are more specific to
Python, such as list comprehension, are rarely used in the
Python implementation.

9.2.12 Generalizability of OIL

We do think our case is representative of industrial DSL
development because OIL is a complex DSL with require-
ments specific to the industrial context. Still, OIL has specific
characteristics that could be very different from other DSLs.
Many DSLs only have one syntax, while OF1 required the
support for multiple syntaxes. Also, OIL is dependent on
another language, IDL, following OF4, while DSLs are often
self-contained. On the other hand, relating to OF3, OIL
has rather simple typing and name binding rules. We think
that desugaring transformations (OF2) and code generation
(OF5) are rather common for DSLs, though the structure
of the transformations and generators may differ, and some
DSLs may be interpreted instead.

10 Discussion

While our evaluation in the previous section is based on con-
clusions drawn from our quantitative analyses, in this section
we discuss aspects of our case study that are of a qualita-
tive nature. First, we discuss the strengths and weaknesses of
Spoofax thatwehave experienced. Second,we list the lessons
learned from our study. Finally, we suggest an engineering
agenda for Spoofax. In the engineering agenda for Spoofax,
we also discuss if and how the weaknesses of Spoofax we

have encountered are improved upon in the next version of
Spoofax.

10.1 Spoofax’s strengths

We list several aspects that worked out well in using Spoofax.

10.1.1 Meta-languages suitable for OIL

The meta-languages that are used (SDF3, NaBL2 and
Stratego) all offered sufficient support for implementing
OIL’s concepts. SDF3 was sufficient for the implementa-
tion of OILXML’s grammar and enabled rapid prototyping
of OILDSL. The name binding and typing features of OIL
and IDL could be specified in NaBL2 using the scope graph
model. OIL’s transformations and code generators could be
implemented using Stratego.

10.1.2 Modular language implementation

All meta-languages supported modular language implemen-
tation in the sense that implementations could be split up in
modules that could be composed or reused. This was ben-
eficial to the Spoofax implementation in many ways. For
example, reusing SDF3modules for shared expression gram-
mar prevented the need to define duplicate grammar rules
for the four input languages (see Sect. 5.2). Stratego allows
modular and composable definitions of transformations. In
particular, Stratego enabled us to implement additional AST
schemas and the resilient staging framework, which helped
in creating a modular transformation architecture. Lastly,
there is little overhead in creating new (composed) languages,
which enabled us to easily add an extra language (IDL-OIL-
TEST-DSL) specific for testing scenarios of multiple IDL
and OIL specifications in isolation.

10.1.3 IDE support

Spoofax derives several editor services automatically for
language implementations: parsing, AST inspection, syntax
highlighting, syntax error recovery, showing type informa-
tion, reference resolution, execution of analysis and trans-
formations on file changes, execution of transformations on
user request, and marking errors on the specifications. This
made it feasible for us to realize an IDE for OIL. The ability
to offer a DSL with a user-friendly IDE is beneficial for the
adoption ofDSLs in an industrial environment such as Canon
Production Printing.

10.1.4 Language testing

SPT was useful for testing the implementations of IDL and
OILand tomaintain implementation correctnesswhile evolv-

123

OIL: an industrial case study in language engineering with Spoofax

ing the languages. SPT supports testing of several (isolated)
aspects of the languages such as parsing, name resolution,
and typing, as well as end-to-end tests for testing the trans-
lations to C++ and mCRL2. Testing helps in obtaining a
reliable language implementation and validation during lan-
guage evolution. For example, when adding or changing
functionality to OIL, tests help to ensure other functional-
ity is maintained.

10.1.5 Integration support

Spoofax contains three features for integrating a language
implementation within a software ecosystem. First, Stratego
offers a Java API which makes it possible to manually imple-
ment a transformation rule in the general-purpose language
Java, which also enables integration of external tools. This
Java API has been used to integrate the SAT solver Z3 for
static analysis to optimize generated C++ code [47]. This
could also enable automated integration with the mCRL2
toolset, i.e., by automatically callingmCRL2 in a transforma-
tion. Second, Spoofax languages can be built outside Eclipse
using the Maven or Gradle build systems. This should make
it possible to integrate OIL in larger software builds such
as continuous integration (CI) or production builds, which is
relevant for software development at, e.g., Canon Production
Printing. Third, Spoofax offers a Java API (named Spoofax
Core) which enables to integrate parts of a Spoofax language
implementation such as the parser or transformations within
the Java ecosystem.Potentially, these features in combination
can enable the integration into an existing industrial software
ecosystem.

10.2 Spoofax’s weaknesses

We list several aspects that did not work out well in using
Spoofax.

10.2.1 Limited portability

Portability concerns to what extent software can be used in
different environments. Spoofax currently only provides full
support in Eclipse as the IDE for language development and
limited support for IntelliJ IDEA. This lack of portability
limits the practical applicability opportunities of the language
workbench. For example, at Canon Production Printing, soft-
ware engineers mainly use the Visual Studio IDE, which
is currently not supported by Spoofax. Although Spoofax
does support integrating parts of a language implementation
outside Eclipse using the Java API, the meta-DSLs are not
available as independent libraries, hindering integration with
other tooling.

10.2.2 Building and runtime performance

The language development experience inSpoofax is hindered
by long build times and long response times after changes,
sometimes blocking you for minutes. Although it is work-
able, it does not conform to the response times expected
from interactive systems. The editing experience is non-
concurrent, e.g., while a build is busy and one changes a
file, the build first has to finish before the changed file gets
reanalyzed. If a project consists of multiple subprojects, all
subprojects have to be built manually one by one in the cor-
rect order, because automatic derivation of the correct build
order is lacking. This especially becomes cumbersome in a
project such as OIL that consists of 14 subprojects, which
together take about 16min to build on a company provided
laptop.When changes aremade, the projects that are affected
by the changes need to be rebuilt. Especially in an industrial
context this is a problem, as costly time of engineers is spent
on building projects rather than actual development.

10.2.3 Cross-language static analysis

Spoofax with NaBL2 does not offer native support for
merging scope graphs of languages to realize language com-
position on the static semantics level. Conceptually, language
composition on the static semantics level using scope graphs
boils down to merging the root node of two languages’ scope
graphs. In practice, this required a workaround by merging
the language definitions of IDL and OIL in one language
project which accepts both IDL and OIL specifications (see
Sect. 7.2). This is a workaround that could be resolved if
Spoofax would offer coupling separately-defined languages
bymerging their scope graphs. The languages could then live
next to each other, with their own file extensions, and only
interact on scope graphs during static analysis.

10.2.4 Lack of static checking and debugging in NaBL2 and
Stratego

The language development experience in NaBL2 and Strat-
ego sometimeswas hindered by the limited static checking of
specifications in the meta-DSLs. As a result, it often occurs
that errors made in a specification are only encountered dur-
ing execution. For example, a Stratego strategy can fail on
getting an incompatible type of term as input which could
have been statically checked if strategies were typed. Also,
no interactive debugging support for transformations is avail-
able. When transformations fail, stack traces are reported
without references to the source codewith line numbers. This
is problematic in an industrial context as it makes engineers
spend more time on debugging.

123

O. Bunte et al.

10.2.5 Using static analysis in transformations

Using the NaBL2 analysis results in transformations is cum-
bersome because low-level querying of the scope graph is
required for general operations such as finding a declaration
given a reference (see Sect. 8.2). The API is also sparsely
documented, which makes it unclear how the API should be
used. Spoofax could improve here by offering abstractions
for common static analysis querying patterns.

10.2.6 Language evolution and refactoring

Evolving a language implementation in Spoofax can lead
to cumbersome situations. For example, when IDL and OIL
change, all specifications written in IDL and OIL have to
be migrated manually. If the signature of a term changes,
many Stratego transformations may need to be migrated as
well. This has occurred in practice, for instance, when area
type “scope” was renamed to “zone”. Applying the change
of a name throughout the implementation involves inten-
sive searching and replacing. Spoofax could be improved by
adding support for cross-project and cross-meta-DSL refac-
torings in language definitions, similar to how modern IDEs
support this.

10.2.7 Fine-grained testing

SPT mostly supports end-to-end testing of language imple-
mentations, whereas it was often desired to test individual
parts of the implementation in a more fine-grained manner.
For example, it was only possible to test desugaring trans-
formations with SPT by defining tests that, given an OIL
specification, generate the normalized IR, apply the desug-
aring transformation on it, and then transform it back to
the original syntax. The success of this test does not only
depend on the desugaring transformation, but also on the
transformations between the textual OIL specification and
the normalized IR. It would be useful if, in SPT, one could
write a test for a particular transformation rule or strategy for
an input directly written as ATerm, essentially unit testing a
small part of a transformation.

10.2.8 Editor actions for configurable code generators

As discussed in Sect. 8.3, some code generators have a num-
ber of configuration options. A user can pick values for these
configuration options when selecting a code generator in edi-
tor action menus, which are defined using ESV (Spoofax’s
meta-DSL for defining editor services, see Sect. 2.6). How-
ever, it is not possible in ESV to reuse (sub)menus; every
(sub)menu and menu item must be defined explicitly. When
adding a new configuration option with n possible values, n
times more editor actions need to be defined, which makes

the size of the ESV file exponential in the number of config-
uration options.

10.3 Lessons learned

We list our most important lessons learned from imple-
menting OIL in the industrial context of Canon Production
Printing both using Python and using Spoofax 2:

1. The meta-DSLs in Spoofax are just like DSLs limited to
a certain domain, and it is not unheard of that we end
up at the edges of this domain. For us, the meta-DSLs
in Spoofax have been sufficient in the industrial con-
text. Except for a few practical workarounds, we have
experiencedno limitations in implementing concrete syn-
tax (with SDF3), abstract syntax (with Stratego), static
semantics (with NaBL2 for typing and name binding
and with Stratego for well-formedness checking), and
dynamic semantics (with Stratego).

2. The biggest limitations of Spoofax 2 are not in the func-
tional aspects of meta-DSLs, but in their non-functional
characteristics, e.g., slow build and response times, lim-
ited documentation, limited portability, and limited static
checking of meta-DSL specifications.

3. ChoosingXMLandPython is a viable engineering choice
in the absence of a language workbench. XML is a good
choice for an effective implementation of concrete syntax
for a DSL if dependence on external tools is undesired.
Therefore, this is a simple alternative to using a language
workbench with a penalty of roughly twice the code size
and half of the editor features, as well as a penalty in the
user-friendliness of the language.

4. A main benefit of DSLs is the multiplicative factor: from
a single specification in a DSL, multiple backends can
be targeted or multiple artifacts can be generated. This
multiplicative factor is essential for the effectiveness of
meta-DSLs used to implement DSLs: a single specifi-
cation in a meta-DSL can generate multiple language
processing artifacts and editor services. For instance,
from an SDF3grammar, not only a parser is generated,
but also an AST schema, a pretty printer, origin tracking
and editor services.

5. Separate meta-DSLs for separate language implementa-
tion aspects lead to a clear separation of concerns,making
it effective to define andmaintain language aspectswithin
those concerns. From our experience, the fundamental
design decision of Spoofax to have clearly separated
meta-DSLs seems to be working well.

6. Specifications written in Spoofax’s meta-DSLs can have
high reusability and extensibility, by decomposition into
modules, but this can come with a considerable cost in
terms of code to compose the modules. However, since
this code almost only consists of declaring and importing

123

OIL: an industrial case study in language engineering with Spoofax

modules, we recommend to use Spoofax’s meta-DSLs in
a modular way.

10.4 Spoofax engineering agenda

Based on our experiences from implementing OIL with
Spoofax 2, we suggest the following improvements to make
on the language workbench to increase its adoptability in
industry.We have presented these items to the Spoofax devel-
opment team and incorporated their responses with respect
to if and how these items have improved upon in Spoofax 3.

10.4.1 Portability

Bymaking Spoofax available tomore IDEs,more developers
could make use of it in their IDE of choice. When companies
have a policy on which IDEs engineers should use, not sup-
porting such IDEs can block Spoofax from being adopted.
Potentially, adding Language Server Protocol (LSP) support
can help in improving Spoofax’s portability; in principle the
support needs to be implemented once but will make Spoofax
available to all IDEs that support LSP. Although Spoofax
3 is not more portable out of the box (it supports Eclipse,
Gradle, and a command line interface), it features a funda-
mentally different architecture thanSpoofax 2.By supporting
static rather than dynamic loading of languages, it is easier to
extend Spoofax 3with support for other IDEs or LSP.Custom
language integrations are also easier to make, as languages
can be packaged as Java libraries. In addition to languages
developed with Spoofax, it would also be useful to offer the
meta-DSLs as libraries, as that would ease integration with
other tooling and allows the meta-DSLs to reach wider audi-
ences.

10.4.2 Language build system

Several improvements can be made to the language build
system provided by Spoofax to improve the development
experience: improving build times (e.g., by further incremen-
talizing builds), automatically building a project that consists
of multiple subprojects in the right order based on depen-
dencies, and automatically checking whether exports and
imports of files between projects are valid such that errors
are detected early and do not require trial and error to debug.
Spoofax 3 improves on all these aspects with the introduction
of the PIE (Pipelines for Interactive Environments) [29] build
system which features fully incremental builds for imple-
menting both Spoofax 3 itself as well as languages developed
with Spoofax 3. This is also relevant to debugging Stratego 2
code:with quick enough compilation round-trip, print debug-
ging becomes much more viable.

10.4.3 Runtime performance

Improving the response times after changes inSpoofaxwould
improve the development experience, such that less time dur-
ing development is spent on waiting. In Spoofax in Eclipse,
concurrent editor actions would improve the development
experience; currently, e.g., when a build is busy, changes to
other files are only picked up after the build finishes. Spoofax
3 with incrementalization using PIE improves runtime per-
formance of both language builds as well as responsiveness
of interactions in the IDE. With the introduction of PIE, run-
time performance is not better for all implementation aspects
as, e.g., the same SDF3 parser generation is used which itself
is not incrementalized.

10.4.4 Cross-language static analysis

Spoofax could be improved by supporting cross-language
static analysis by making it possible to merge the scope
graphs of two separately defined languages, as also described
by Zwaan [61]. In Spoofax 2 this was deemed virtually
impossible to implement. Thanks to the new architecture of
Spoofax 3, it supports the implementation of cross-language
static analysis, which should support the OIL and IDL case.
Cross-meta-language static analysis was one of the goals of
Zwaan [61], but have not yet been materialized.

10.4.5 Static checking in meta-DSLs

Improved static checking in Spoofax’s meta-DSLs would
enhance the language development experience by reducing
the need for trial and error. The next version of Spoofax partly
improves on these aspects, in the meta-DSLs Stratego 2 and
Statix (successor to NaBL2). Stratego 2 introduces gradual
typing [23] and Statix comes with static checks on its speci-
fications.

10.4.6 Stratego debugging

Spoofax only supports debugging of Stratego transforma-
tions by adding debug transformation rules that print infor-
mation to the console. It would be beneficial for development
withStratego to be able to step through a transformation inter-
actively, while showing the values of local variables and the
term that the transformation is applied on. Spoofax 3 and
Stratego 2 do not yet support debugging of transformations.

10.4.7 Integrating static analysis with transformations

An improved API for using static analysis results in transfor-
mations can make transformation definitions more simple.
In NaBL2’s successor, Statix [25], some issues are allevi-
ated already. For instance, in Statix properties are defined on

123

O. Bunte et al.

terms directly instead of on scope graph nodes, which makes
querying them straightforward.

10.4.8 Documentation

Improved documentation will help engineers new to Spoofax
to learn and adopt the tool, without having to learn from
experiences from others or by experimentation.

10.4.9 Unit testing Stratego

It would be desired to have core support for unit-testing
Stratego transformation rules in SPT, by supplying an input
term, a transformation, and an expected result term. Espe-
cially for large andmodular transformation architectures, the
restriction of only testing end-to-end transformations makes
it difficult and cumbersome to test individual parts of the
transformation architecture.

10.4.10 ESV-Stratego integration

A better integration between ESV and Stratego could make
the definition of editors services more simple. For example,
supporting parameterized Stratego transformations in ESV
would avoid redundant definitions. In the current state of
ESV, the size of an ESV specification grows exponentially
in the number of configuration options available for an end-
to-end transformation.

11 Related work

We discuss related work on evaluating language work-
benches (and tools to develop DSLs in general) and other
process languages such as OIL.

11.1 Language workbench evaluation

We first discuss Spoofax and then other language work-
benches.

Most research on Spoofax focuses on the language work-
bench’s fundamentals, with artificial languages as examples.
An exception of this is Visser’s case study on the develop-
ment of WebDSL [62], which discusses language design and
implementation for a DSL in the domain of web program-
ming. The paper highlights the DSL development process
and how the different aspects of this process can be covered
by the meta-DSLs of Spoofax. This study uses Spoofax ver-
sion 1, the predecessor of the Spoofax version used in our
study. Several discussion sections cover DSL engineering
evaluation criteria focusing on the process and the language
that is produced, not on the tools for developing the language

(SDF + Stratego), language engineering paradigms, or lan-
guage engineering challenges. Therefore, this work does not
evaluate Spoofax itself or how it compares to not using a lan-
guage workbench. Hamey and Goldrei [63] reported on their
experiences of using SDF and Stratego compared to using
traditional techniques. They found that the Stratego toolset
enabled easy implementation with opportunity of enhancing
the language and improving performance of generated code,
compared to the implementation using traditional techniques.

Canon Production Printing uses modeling languages
across various engineering disciplines [64]. Schindler et al.
describe how the company envisions the use ofmodels during
the complete life cycle of printers to address the challenges
of efficiently performing continuous innovation with sus-
tainable quality. The MPS language workbench is selected
as one of the core technologies to develop custom DSLs
that can interconnect the models from different engineering
disciplines and tools. The authors find that using modeling
approaches has advantages: users only have to learn a single
tool, multiple models can be generated from a single tool,
and one point of maintenance is needed instead of multi-
ple. They also encountered challenges in using MPS: steep
learning curve, lack of full-fledged DSL models in MPS for
commodity languages such as C++, existing parsers or gram-
mars are not immediately reusable, and performance can be
undesirably low.

Voelter et al. [12] report on their experiences on using
MPS for the development of mbeddr, a large set of languages
and extensions of the C language that targets embedded
software development. This work is, to our knowledge, the
largest evaluation of a language workbench, spanning a
case that involved around 10 person years of development
effort in an industrial setting. Whereas our work is centered
around evaluating productivity, the paper by Voelter et al.
is centered around five topics concerning the use of MPS:
language modularity, notational freedom and projectional
editing, mechanisms for managing complexity, performance
and scalability issues, and consequences for the development
process. The authors draw generally positive conclusions and
indicate various places for improvement as well.

Broccia et al. [65] state that although the quantitative
aspects of language workbenches are often discussed in
literature (e.g., the evaluations and comparisons by Erd-
weg et al. [5]), the evaluation of comprehensibility of the
meta-languages used in language workbenches is typically
neglected. The authors evaluate the Neverlang [66] language
workbench on four aspects. First, the comprehensibility of
programs in Neverlang in terms of users’ effectiveness and
efficiency in code comprehension tasks. Second, the relation-
ship between comprehensibility and users’ working memory
capacity. Third, to which extent users consider the language
workbench acceptable in terms of perceived ease of use, use-
fulness, and intention to use. Fourth, how comprehensibility

123

OIL: an industrial case study in language engineering with Spoofax

relates to the degree of acceptance of the language. The study
suggests that users’workingmemory capacitymay be related
to the ability to comprehend Neverlang programs. Effective-
ness and efficiency do not appear to be related to an increase
of users’ acceptance variables. We believe more studies like
these can be useful for getting a better understanding of how
language workbenches are perceived and what influences
their adoption.

Klint et al. [67] found that using DSL tools (ANTLR,
OMeta, Microsoft “M”) improve the maintainability of
language implementations by comparing several implemen-
tations of the same DSL both with and without the use
of DSL tools; the implementations without DSL tools use
GPLs (Java, JavaScript, C#). The evaluation considers pars-
ing, static analysis, and transformation. The results suggest
that DSL tools increase maintainability of DSL implemen-
tation compared to using GPLs. The work is similar to our
work by comparing implementations of aDSL usingGPLs to
implementations using tools specific for DSL development.
Thework byKlint et al. differs fromourwork in the sense that
they compare six implementations instead of two, the DSL
tools do not cover aspects of language engineering such as
deriving IDEs, and they focus on maintainability instead of
productivity.

Åkesson et al. [68] report on their experiences on the
implementation of a Modelica compiler using JastAdd [69]
compiler tool. In particular, an aim is to achieve extensibility
of the compiler, which led to the choice of using the declara-
tive attribute grammar approach provided by JastAdd. They
illustrate how existing design strategies for a Java compiler
implemented using JastAdd could be reused for advanced
features of the Modelica compiler. The authors show com-
plex semantic rules can be implemented in a compact and
modular manner. Given the 9 man-months of development
time that was spent on creating the implementation, they find
that JastAdd is very well suited for rapid compiler develop-
ment.

Basten et al. present a language engineering case study
on a Rascal implementation of Oberon-0 [70], focusing on
how the language can be implemented in a modular way.
Oberon-0 consists of four language levels where each suc-
ceeding level is implemented as an extension of the preceding
level, supported by Rascal’s modularity features. The imple-
mentation used less than 1500 SLOC which includes the
implementation of parsing, name and type analysis, desugar-
ing, transformation, and compilation to C. Additionally, they
found directions for improvement for Rascal.

Zarrin et al. [71] report on their experiences of introduc-
ing a DSL for material flow analysis using Microsoft DSL
tools. Their motivation for using the DSL is to enable domain
experts to evolve existing software to fulfill new require-
ments. The authors report that the DSL tools were mature
enough to develop a complete DSL. Drawbacks include

redundantly having to define semantics for simulation and
code generation, the visualization of the metamodel is diffi-
cult to understand, and being limited to graphical notation.

Other implementations exist of DSLs like OIL for the
specification of behavior. For instance, the language Dezyne
developed by the company Verum9 can be used to define
system behavior and its implementation in Guile10 includes
multiple code generators [72]. The Comma framework11

contains a collection of languages and tools to define and
analyze the signatures and behavior of interfaces and is
implemented using Xtext, which also supports many code
generators [73]. BPMN12 is a UML-like graphical language
for modeling business processes maintained by the Object
Management Group, implemented using MOF (Meta Object
Family), with XSD for static semantics and XSLT13 for
dynamic semantics [74]. SystemC14 is a language for simu-
lating event-driven concurrent processes, defined as a subset
of C++ with predefined classes and functions, which makes
it possible to reuse much of the already existing analysis and
editor services for C++.

12 Conclusions

In this paper, we have presented an industrial case study on
language engineeringwith the Spoofax languageworkbench.
In summary, the contributions of this paper are:

• An evaluation of whether Spoofax’s original claims—on
making language development, compared to not using
a language workbench, more productive—stand when
realizing the implementation of a complex industrial lan-
guage such as OIL.

• Lessons learned on implementing OIL using Spoofax in
the industrial context of Canon Production Printing.

• Strengths, weaknesses, and an agenda for future engi-
neering on Spoofax.

We found that Spoofax and its meta-DSLs SDF3, NaBL2
and Stratego were adequate for implementing OIL. It was
possible to implement every OIL feature using the meta-
DSLs. Several workarounds were needed, such as the inter-
action between IDL andOILwhen it comes to static analysis,
but these could still be implemented within Spoofax.

9 https://www.verum.com/.
10 https://www.gnu.org/software/guile/.
11 https://comma.esi.nl/.
12 https://www.bpmn.org/.
13 https://www.w3.org/TR/xslt-30/.
14 https://systemc.org/.

123

https://www.verum.com/
https://www.gnu.org/software/guile/
https://comma.esi.nl/
https://www.bpmn.org/
https://www.w3.org/TR/xslt-30/
https://systemc.org/

O. Bunte et al.

In our evaluation, we found indications that it is more
productive to implement a complex DSL with a language
workbench compared to not using a language workbench.
We did this by comparing the code volume (in SLOC) of two
implementations of OIL, one using Spoofax and one using
Python, which both already existed before the evaluation.
The evaluation shows that the Spoofax implementation used
fewer SLOC compared to the Python implementation, while
offering more editor features. This is relevant in an industrial
setting because it enables to develop a full-featured IDEwith
less code.

Naturally, our evaluation is not without threats to its valid-
ity. The use of SLOC as metric for productivity is contested.
For instance, there can be much variance in what a line of
code defines. We do feel that the results on code volume per
artifact are an indication for higher productivitywith Spoofax
compared to Python, as the analyses show considerable dif-
ferences in SLOC for artifacts with the same functionality
and because both implementations were created before we
had the intent to evaluate them. Since our evaluation is done
for a single use case, it is difficult to generalize our findings
to other workbenches, languages and contexts. Therefore,
we call for more studies on applications of language work-
benches in practice. This is relevant because it will help
industrial language engineers decide when and how to use
language workbenches.

In our study, we have primarily focused on evaluating
and comparing productivity. Still, we were able to make sev-
eral observations for other concerns such as modularity and
maintainability of language implementations, both positive
and negative. For example, the ability to easily extend SDF3
definitions and Spoofax projects benefits modularity and the
ability to generatemultiple artifacts from a single source ben-
efitsmaintainability. On the other hand, the inability tomerge
scope graphs of different languages hinders modularity and
the steep learning curve of NaBL2 hinders maintainability.
Since concerns such as the modularity and maintainability
of language implementations are important for developing
DSLs in industry, we encourage more studies that evaluate
language workbenches in detail on dimensions other than
productivity.

Although Spoofax was suitable for implementing OIL,
we see several areas of improvements. These are mainly in
the practical use of the language workbench, such as lim-
ited portability, slow build and response times, and limited
documentation. For the meta-DSLs, we see the following
opportunities for improvement: supporting cross-language
static analysis, improving the API for using static analy-
sis results in transformations, supporting unit testing, and
improving the integration of Stratego in the definition of
editor services. Several of these improvements have been
included in the next version of Spoofax.

Based on our study, we provide the following advise.

• For industrial language engineers:Use a languagework-
bench for developing DSLs especially if a user-friendly
editor for the languages is desired; not doing so leads
to “reinventing the wheel”, which can cost considerable
effort.

• For industrial language engineers:When IDE support is
not required, using, e.g., off-the-shelf parser generators
and a GPL could be a valid engineering choice for imple-
menting the concrete syntax of a DSL, as the drawbacks
of a language workbench may outweigh the benefits.

• For languageworkbench developers:Focus on the practi-
cal aspects of language workbenches such as portability,
usability, and documentation to improve adoptability.

Acknowledgements This studywas started under the guidance ofEelco
Visser, who passed away on April 5, 2022. The authors decided to
posthumously acknowledge his contributions to this work by making
him co-author. We thank Aron Zwaan, Gabriel Konat, Hendrik van
Antwerpen, Daniël Pelsmaeker, and Jeff Smits for their feedback on
our findings on Spoofax 2, especially regarding how they compare to
Spoofax 3. We thank the reviewers for their useful feedback that helped
us improve the paper.

Funding Funding was provided by the Top Consortia for Knowledge
and Innovation and by Canon Production Printing.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages:
an annotated bibliography. SIGPLAN Not. 35(6), 26–36 (2000).
https://doi.org/10.1145/352029.352035

2. Boersma, M.: Business-Friendly DSLs. Manning (to appear)
(2024) 9781617296475

3. van Deursen, A., Heering, J., Klint, P.: Language Prototyping: An
Algebraic Specification Approach, volume 5 of AMAST Series in
Computing. World Scientific, Singapore (1996). ISBN 978-981-
4498-73-9. https://doi.org/10.1142/3163

4. Fowler, M.: Language workbenches: The killer-app for domain
specific languages? (2005)

5. Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman,
R., Cook, W.R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A.,
Konat, G., Molina, P.J., Palatnik, M., Pohjonen, R., Schindler, E.,
Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist,
K., Wachsmuth, G., van der Woning, J.: Evaluating and comparing
language workbenches: Existing results and benchmarks for the
future. Comput. Lang. Syst. Struct. 44, 24–47 (2015). https://doi.
org/10.1016/j.cl.2015.08.007

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/352029.352035
https://doi.org/10.1142/3163
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1016/j.cl.2015.08.007

OIL: an industrial case study in language engineering with Spoofax

6. Pech, V.: Jetbrains mps: Why modern language workbenches mat-
ter. In: Bucchiarone, A., Cicchetti, A., Ciccozzi, F., Pierantonio,
A. (eds.), Domain-Specific Languages in Practice: with JetBrains
MPS, pp. 1–22. Springer, Berlin (2021). ISBN978-3-030-73758-0.
https://doi.org/10.1007/978-3-030-73758-0_1

7. Eysholdt, M., Behrens, H.: Xtext: implement your language
faster than the quick and dirty way. In: Cook, W.R., Clarke, S.,
Rinard, M.C., (eds.) Companion to the 25th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, SPLASH/OOPSLA 2010, October
17–21, 2010, Reno/Tahoe, Nevada, USA, pp. 307–309. ACM,New
York (2010). ISBN 978-1-4503-0240-1. https://doi.org/10.1145/
1869542.1869625

8. Klint, P., van der Storm, T., Vinju, J.J.: EASY meta-programming
with Rascal. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva,
J. (eds.) Generative and Transformational Techniques in Software
Engineering III—International Summer School, GTTSE 2009,
Braga, Portugal, July 6–11, 2009. Revised Papers, volume 6491 of
Lecture Notes in Computer Science, pp. 222–289. Springer, Berlin
(2009). ISBN 978-3-642-18022-4. https://doi.org/10.1007/978-3-
642-18023-1_6

9. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules
for declarative specification of languages and IDEs. In:Cook,W.R.,
Clarke, S., Rinard, M.C. (eds.) Proceedings of the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2010, pp. 444–
463, Reno/Tahoe, Nevada (2010). ACM, New York. ISBN 978-1-
4503-0203-6. https://doi.org/10.1145/1869459.1869497

10. Barash,M.: Vision: the next 700 languageworkbenches. In: Visser,
E., Kolovos, D.S., Söderberg, E. (eds.) SLE ’21: 14th ACM
SIGPLAN International Conference on Software Language Engi-
neering,Chicago, IL,USA,October 17–18, 2021, pp. 16–21.ACM,
New York (2021). ISBN 978-1-4503-9111-5. https://doi.org/10.
1145/3486608.3486907

11. Van den Brand,M., van Deursen, A., Klint, P., Klusener, S., van der
Meulen, E.: Industrial applications of asf+ sdf. In: International
Conference on Algebraic Methodology and Software Technology,
pp. 9–18. Springer, Berlin (1996)

12. Voelter,M.,Kolb,B., Szabó,T.,Ratiu,D., vanDeursen,A.: Lessons
learned from developing mbeddr: a case study in language engi-
neering with MPS. Softw. Syst. Model. 18(1), 585–630 (2019).
https://doi.org/10.1007/s10270-016-0575-4

13. Groenewegen, D.M., Hemel, Z., Kats, L.C.L., Visser, E.:WebDSL:
a domain-specific language for dynamic web applications. In: Har-
ris, G.E. (ed.), Companion to the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2008, October 19–13, 2007,
Nashville, TN, USA, pp. 779–780. ACM, New York (2008). ISBN
978-1-60558-220-7. https://doi.org/10.1145/1449814.1449858

14. Groenewegen, D.M., van Chastelet, E., Visser, E.: Evolution of
the WebDSL runtime: reliability engineering of the WebDSL web
programming language. In: Aguiar, A., Chiba, S., Boix, E.G. (eds.)
Programming’20: 4th InternationalConference on theArt, Science,
and Engineering of Programming, Porto, Portugal, March 23–26,
2020, pp. 77–83.ACM,NewYork (2020). ISBN978-1-4503-7507-
8. https://doi.org/10.1145/3397537.3397553

15. Harkes, D., Visser, E.: Icedust 2: Derived bidirectional relations
and calculation strategy composition. In:Müller, P. (ed.) 31st Euro-
peanConference onObject-Oriented Programming, ECOOP 2017,
June 19–23, 2017, Barcelona, Spain, volume 74 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. ISBN 978-3-
95977-035-4. https://doi.org/10.4230/LIPIcs.ECOOP.2017.14

16. Harkes, D., van Chastelet, E., Visser, E.: Migrating business logic
to an incremental computing DSL: a case study. In: Pearce, D.,
Mayerhofer, T., Steimann, F. (eds.) Proceedings of the 11th ACM
SIGPLAN International Conference on Software Language Engi-

neering, SLE 2018, Boston,MA,USA,November 05-06, 2018, pp.
83–96. ACM,NewYork (2018). ISBN978-1-4503-6029-6. https://
doi.org/10.1145/3276604.3276617

17. Visser, E., Wachsmuth, G., Tolmach, A.P., Néron, P., Vergu,
V.A., Passalaqua, A., Konat, G.: A language designer’s work-
bench: A one-stop-shop for implementation and verification of
language designs. In: Black, A.P., Krishnamurthi, S., Bruegge, B.,
Ruskiewicz, J.N. (eds.) Onward! 2014, Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, part of SPLASH
’14, Portland, OR, USA, October 20–24, 2014, pp. 95–111. ACM,
New York (2014). ISBN 978-1-4503-3210-1. https://doi.org/10.
1145/2661136.2661149

18. Visser, E.: Syntax Definition for Language Prototyping. Ph.D. the-
sis, University of Amsterdam, September (1997)

19. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Strat-
ego/XT 0.17. A language and toolset for program transformation.
Sci. Comput. Program. 72(1–2), 52–70 (2008). https://doi.org/10.
1016/j.scico.2007.11.003

20. van Antwerpen, H., Néron, P., Tolmach, A.P., Visser, E.,
Wachsmuth, G.: A constraint language for static semantic analysis
based on scope graphs. In: Erwig, M., Rompf, T. (eds.) Proceed-
ings of the 2016 ACM SIGPLANWorkshop on Partial Evaluation
and ProgramManipulation, PEPM 2016, St. Petersburg, FL, USA,
January 20–22, 2016, pp. 49–60. ACM, New York (2016). ISBN
978-1-4503-4097-7. https://doi.org/10.1145/2847538.2847543

21. Konat, G.: Language-Parametric Methods for Developing Inter-
active Programming Systems. Ph.D. thesis, Delft University of
Technology, Netherlands (2019)

22. de SouzaAmorim, L.E., Visser, E.:Multi-purpose syntax definition
with SDF3. In: de Boer, F.S., Cerone, A. (eds.) Software Engineer-
ing and Formal Methods—18th International Conference, SEFM
2020, Amsterdam, The Netherlands, September 14–18, 2020, Pro-
ceedings, volume 12310 of LectureNotes inComputer Science, pp.
1–23. Springer, Berlin (2020). ISBN 978-3-030-58768-0. https://
doi.org/10.1007/978-3-030-58768-0_1

23. Smits, J., Visser, E.: Gradually typing strategies. In: Lämmel, R.,
Tratt, L., de Lara, J. (eds.) Proceedings of the 13th ACMSIGPLAN
International Conference on Software Language Engineering, SLE
2020,Virtual Event, USA,November 16-17, 2020, pp. 1–15.ACM,
New York (2020). ISBN 978-1-4503-8176-5. https://doi.org/10.
1145/3426425.3426928

24. Smits, J., Konat, G., Visser, E.: Constructing hybrid incremental
compilers for cross-module extensibility with an internal build
system. Program. J. 4(3), 16 (2020). https://doi.org/10.22152/
programming-journal.org/2020/4/16

25. Rouvoet, A., van Antwerpen, H., Poulsen, C.B., Krebbers, R.,
Visser, E.: Knowing when to ask: sound scheduling of name reso-
lution in type checkers derived from declarative specifications. In:
Proceedings of the ACM on Programming Languages, 4 (OOP-
SLA) (2020). https://doi.org/10.1145/3428248

26. Néron, P., Tolmach, A.P., Visser, E., Wachsmuth, G.: A theory
of name resolution. In: Vitek, J. (ed.) Programming Languages
andSystems—24thEuropeanSymposiumonProgramming, ESOP
2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11–18,
2015. Proceedings, volume 9032 of Lecture Notes in Computer
Science, pp. 205–231. Springer, Berlin (2015). ISBN 978-3-662-
46668-1. https://doi.org/10.1007/978-3-662-46669-8_9

27. Zwaan, A., van Antwerpen, H., Visser, E.: Incremental type-
checking for free: using scope graphs to derive incremental
type-checkers. In: Proceedings of the ACM on Programming Lan-
guages 6(OOPSLA2), 424–448 (2022). https://doi.org/10.1145/
3563303

28. Smits, J., Wachsmuth, G., Visser, E.: Flowspec: a declarative
specification language for intra-procedural flow-sensitive data-flow

123

https://doi.org/10.1007/978-3-030-73758-0_1
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/3486608.3486907
https://doi.org/10.1145/3486608.3486907
https://doi.org/10.1007/s10270-016-0575-4
https://doi.org/10.1145/1449814.1449858
https://doi.org/10.1145/3397537.3397553
https://doi.org/10.4230/LIPIcs.ECOOP.2017.14
https://doi.org/10.1145/3276604.3276617
https://doi.org/10.1145/3276604.3276617
https://doi.org/10.1145/2661136.2661149
https://doi.org/10.1145/2661136.2661149
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1007/978-3-030-58768-0_1
https://doi.org/10.1007/978-3-030-58768-0_1
https://doi.org/10.1145/3426425.3426928
https://doi.org/10.1145/3426425.3426928
https://doi.org/10.22152/programming-journal.org/2020/4/16
https://doi.org/10.22152/programming-journal.org/2020/4/16
https://doi.org/10.1145/3428248
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/3563303
https://doi.org/10.1145/3563303

O. Bunte et al.

analysis. J. Comput. Lang. 57, 100924 (2020). https://doi.org/10.
1016/j.cola.2019.100924

29. Konat, G., Steindorfer, M.J., Erdweg, S., Visser, E.: PIE: a domain-
specific language for interactive software development pipelines.
Program. J.2(3), 9 (2018). https://doi.org/10.22152/programming-
journal.org/2018/2/9

30. Pelsmaeker, D.A.A., van Antwerpen, H., Poulsen, C.B., Visser,
E.: Language-parametric static semantic code completion. In: Pro-
ceedings of the ACM on Programming Languages, 6 (OOPSLA),
pp. 1–30 (2022). https://doi.org/10.1145/3527329

31. van den Mark, G.J., de Brand, H.A., Jong, P.K., Olivier, P.A.: Effi-
cient annotated terms. Softw. Pract. Exp. 30(3), 259–291 (2000)

32. Klop, J.W.: Term rewriting systems: From Church-Rosser to
Knuth-Bendix and beyond. In: Paterson, M. (ed.) Automata,
Languages and Programming, 17th International Colloquium,
ICALP90, Warwick University, England, July 16–20, 1990, Pro-
ceedings, volume 443 of Lecture Notes in Computer Science, pp.
350–369. Springer, Berlin (1990). ISBN 3-540-52826-1

33. Chomsky, N.: Three models for the description of language. IRE
Trans. Inf. Theory 2(3), 113–124 (1956). https://doi.org/10.1109/
TIT.1956.1056813

34. Vollebregt, T., Kats, L.C.L., Visser, E.: Declarative specifica-
tion of template-based textual editors. In: Sloane, A., Andova, S.
(eds.) International Workshop on Language Descriptions, Tools,
and Applications, LDTA ’12, Tallinn, Estonia, March 31–April 1,
2012, pp. 1–7. ACM, NewYork (2012). ISBN 978-1-4503-1536-4.
https://doi.org/10.1145/2427048.2427056

35. van den Brand, M.G.J., Scheerder, J., Vinju, J.J., Visser, E.: Dis-
ambiguation filters for scannerless generalized LR parsers. In:
Horspool, R.N. (ed.) Compiler Construction, 11th International
Conference, CC 2002, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2002, Grenoble,
France, April 8-12, 2002, Proceedings, volume 2304 of Lecture
Notes in Computer Science, pp. 143–158. Springer, Berlin (2002).
ISBN 3-540-43369-4. https://doi.org/10.1007/3-540-45937-5_12

36. van Deursen, A., Klint, P., Tip, F.: Origin tracking. J. Symb. Com-
put. 15(5/6), 523–545 (1993)

37. van Antwerpen, H., Poulsen, C.B., Rouvoet, A., Visser, E.: Scopes
as types. Proceedings of the ACM on Programming Languages, 2
(OOPSLA) (2018). https://doi.org/10.1145/3276484

38. Visser, E., Benaissa, Z.-E.-A., Tolmach, A.P.: Building program
optimizers with rewriting strategies. In: Felleisen, M., Hudak, P.,
Queinnec, C. (eds.) Proceedings of the Third ACM SIGPLAN
International Conference on Functional Programming, pp. 13–26,
Baltimore, Maryland, United States (1998). ACM. https://doi.org/
10.1145/289423.289425

39. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45(3), 621–645 (2006)

40. Kats, L.C.L., Vermaas, R., Visser, E.: Testing domain-specific lan-
guages. In: Lopes, C.V., Fisher, K. (eds.) Companion to the 26th
Annual ACMSIGPLANConference onObject-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2011, part
of SPLASH 2011, Portland, OR, USA, October 22–27, 2011, pp.
25–26. ACM, NewYork (2011) ISBN 978-1-4503-0942-4. https://
doi.org/10.1145/2048147.2048160

41. Denkers, J., van Gool, L., Visser, E.: Migrating customDSL imple-
mentations to a language workbench (tool demo). In: Pearce, D.,
Mayerhofer, T., Steimann, F. (eds.) Proceedings of the 11th ACM
SIGPLAN International Conference on Software Language Engi-
neering, SLE 2018, Boston, MA, USA, November 05–06, 2018,
pp. 205–209. ACM, New York (2018). ISBN 978-1-4503-6029-6.
https://doi.org/10.1145/3276604.3276608

42. Bunte,O., vanGool, L.C.M.,Willemse, T.A.C.: Formal verification
of OIL component specifications usingmCRL2. STTT 24(3), 441–
472 (2022). https://doi.org/10.1007/s10009-022-00658-y

43. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition
untangled. In: Sloane, A., Andova, S. (eds.) International Work-
shop on Language Descriptions, Tools, and Applications, LDTA
’12, Tallinn, Estonia, March 31–April 1, 2012, p. 7. ACM, New
York (2012). ISBN 978-1-4503-1536-4. https://doi.org/10.1145/
2427048.2427055

44. Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M.,
Kats, L.C.L., Visser, E., Wachsmuth, G.: DSL Engineering -
Designing, Implementing and Using Domain-Specific Languages.
dslbook.org (2013). ISBN 978-1-4812-1858-0

45. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Com-
municating Systems. MIT Press, Cambridge (2014). ISBN
9780262321020

46. Frenken, M.: Code generation and model-based testing in context
of OIL (2019)

47. Buskens, T. Optimizing the code generator for OIL (2021)
48. Voogd, S.N., Aslam, K., van Gool, L., Theelen, B., Malavolta, I.:

Real-time collaborative modeling across language workbenches—
a case on Jetbrains MPS and Eclipse Spoofax. In: ACM/IEEE
International Conference onModel Driven Engineering Languages
and Systems Companion, MODELS 2021 Companion, Fukuoka,
Japan, October 10–15, 2021, pp. 16–26. IEEE (2021). ISBN 978-
1-6654-2484-4. https://doi.org/10.1109/MODELS-C53483.2021.
00011

49. van Gool, L.: Formalising interface specifications. Ph.D. thesis,
Eindhoven University of Technology (2006)

50. Bunte, O., van Gool, L.C.M., Willemse, T.A.C.: Formal verifica-
tion of OIL component specifications using mCRL2. In: ter Beek,
M.H., Nickovic, D. (eds.) Formal Methods for Industrial Critical
Systems—25th International Conference, FMICS 2020, Vienna,
Austria, September 2–3, 2020, Proceedings, volume 12327 of Lec-
ture Notes in Computer Science, pp. 231–251. Springer, Berlin
(2020). ISBN 978-3-030-58298-2. https://doi.org/10.1007/978-3-
030-58298-2_10

51. Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B.: A SLOC count-
ing standard. In: Cocomo ii forum, volume 2007, pp. 1–16. Citeseer
(2007)

52. Walston, C.E., Felix, C.P.:Amethod of programmingmeasurement
and estimation. IBM Syst. J. 16(1), 54–73 (1977)

53. Boehm, B.W.: Software engineering economics. IEEE Trans.
Softw. Eng. 10(1), 4–21 (1984)

54. Armour, P.G.: Beware of counting LOC. Commun. ACM 47(3),
21–24 (2004)

55. Wa̧sowski, A., Berger, T.: Domain-specific Languages: Effective
Modeling, Automation, and Reuse. Springer Nature, Berlin (2023)

56. Fowler, M.: Domain-Specific Languages. AddisonWesley, Boston
(2010)

57. Ward, M.P.: Language-Oriented Programming. Software—
Concepts and Tools, 15(4) (1994)

58. Bravenboer, M., van Dam, A., Olmos, K., Visser, E.: Program
transformation with scoped dynamic rewrite rules. Fund. Inform.
69(1–2), 123–178 (2006)

59. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T.,
de Vink, E.P., Wesselink, W., Wijs, A., Willemse, T.A.C.: The
mCRL2 toolset for analysing concurrent systems—improvements
in expressivity and usability. In: Vojnar, T., Zhang, L. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems—
25th International Conference, TACAS 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6–11, 2019, Pro-
ceedings, Part II, volume 11428 of Lecture Notes in Computer
Science, pp. 21–39. Springer, Berlin (2019). ISBN 978-3-030-
17465-1. https://doi.org/10.1007/978-3-030-17465-1_2

60. Minelli, R., Mocci, A., Lanza, M.: I know what you did last sum-
mer: an investigation of how developers spend their time. In: De
Lucia, A., Bird, C., Oliveto, R. (eds.) Proceedings of the 2015 IEEE

123

https://doi.org/10.1016/j.cola.2019.100924
https://doi.org/10.1016/j.cola.2019.100924
https://doi.org/10.22152/programming-journal.org/2018/2/9
https://doi.org/10.22152/programming-journal.org/2018/2/9
https://doi.org/10.1145/3527329
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1145/2427048.2427056
https://doi.org/10.1007/3-540-45937-5_12
https://doi.org/10.1145/3276484
https://doi.org/10.1145/289423.289425
https://doi.org/10.1145/289423.289425
https://doi.org/10.1145/2048147.2048160
https://doi.org/10.1145/2048147.2048160
https://doi.org/10.1145/3276604.3276608
https://doi.org/10.1007/s10009-022-00658-y
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1109/MODELS-C53483.2021.00011
https://doi.org/10.1109/MODELS-C53483.2021.00011
https://doi.org/10.1007/978-3-030-58298-2_10
https://doi.org/10.1007/978-3-030-58298-2_10
https://doi.org/10.1007/978-3-030-17465-1_2

OIL: an industrial case study in language engineering with Spoofax

23rd International Conference on Program Comprehension, ICPC
2015, Florence/Firenze, Italy, May 16–24, 2015, pp. 25–35. ACM,
New York (2015)

61. Zwaan, A.: Composable type system specification using heteroge-
neous scope graphs (2021)

62. Visser, E.: WebDSL: a case study in domain-specific language
engineering. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) Gener-
ative and Transformational Techniques in Software Engineering
II, International Summer School, GTTSE 2007, volume 5235 of
Lecture Notes in Computer Science, pp. 291–373, Braga, Portu-
gal, (2007). Springer, Berlin. ISBN 978-3-540-88642-6. https://
doi.org/10.1007/978-3-540-88643-3_7

63. Hamey, L.G.C., Goldrei, S.: Implementing a domain-specific lan-
guage using stratego/xt: an experience paper. Electron. Notes
Theor. Comput. Sci. 203(2), 37–51 (2008). https://doi.org/10.
1016/j.entcs.2008.03.043

64. Schindler, E., Moneva, H., van Pinxten, J., van Gool, L., van der
Meulen, B., Stotz, N., Theelen, B.: JetBrains MPS as core DSL
technology for developing professional digital printers. In Antonio
Bucchiarone, Antonio Cicchetti, Federico Ciccozzi, and Alfonso
Pierantonio, editors, Domain-Specific Languages in Practice: with
JetBrains MPS, pp. 53–91. Springer, Berlin (2021). ISBN 978-3-
030-73758-0. https://doi.org/10.1007/978-3-030-73758-0_3

65. Broccia, G., Ferrari, A., ter Beek, M.H., Cazzola, W., Favalli,
L., Bertolotti, F.: Evaluating a language workbench: from work-
ing memory capacity to comprehension to acceptance. In: 31st
IEEE/ACM International Conference on ProgramComprehension,
ICPC 2023, Melbourne, Australia, May 15–16, 2023, pp. 54–58.
IEEE (2023). ISBN 979-8-3503-3750-1. https://doi.org/10.1109/
ICPC58990.2023.00017

66. Vacchi, E., Cazzola, W.: Neverlang: a framework for feature-
oriented language development. Comput. Lang. Syst. Struct. 43,
1–40 (2015). https://doi.org/10.1016/j.cl.2015.02.001

67. Klint, P., van der Storm, T., Vinju, J.J.: On the impact of DSL tools
on the maintainability of language implementations. In: Brabrand,
C., Moreau, P.-E. (eds.) Proceedings of the of the Tenth Workshop
on Language Descriptions, Tools and Applications, LDTA 2010,
Paphos, Cyprus, March 28–29, 2010—satellite event of ETAPS,
p. 10. ACM, New York (2010). ISBN 978-1-4503-0063-6. https://
doi.org/10.1145/1868281.1868291

68. Åkesson, J., Ekman, T., Hedin, G.: Implementation of a Mod-
elica compiler using JastAdd attribute grammars. Sci. Comput.
Program. 75(1–2), 21–38 (2010). https://doi.org/10.1016/j.scico.
2009.07.003

69. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. In:
Gabriel, R.P., Bacon, D.F., Lopes, C.V., Steele Jr., G.L., (eds.)
Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada, pp. 1–18. ACM, New York (2007). ISBN 978-1-59593-
786-5. https://doi.org/10.1145/1297027.1297029

70. Basten, B., van denBos, J., Hills,M.,Klint, P., Lankamp,A., Lisser,
B., van der Ploeg, A., van der Storm, T., Vinju, J.J.: Modular lan-
guage implementation in Rascal—experience report. Sci. Comput.
Program. 114, 7–19 (2015). https://doi.org/10.1016/j.scico.2015.
11.003

71. Zarrin, B., Baumeister, H.: Design of a domain-specific language
for material flow analysis using Microsoft DSL tools: An experi-
ence paper. In: Design of a domain-specific language for material
flow analysis using Microsoft DSL Tools: An experience paper
(2014)

72. van Beusekom, R., Groote, J.F., Hoogendijk, P.F., Howe, R.,
Wesselink, W., Wieringa, R., Willemse, T.A.C.: Formalising the
Dezyne modelling language in mCRL2. In: Petrucci, L., Sece-
leanu, C., Cavalcanti, A. (eds.) Critical Systems: Formal Methods
and Automated Verification—Joint 22nd International Workshop

on Formal Methods for Industrial Critical Systems—and—17th
International Workshop on Automated Verification of Critical Sys-
tems, FMICS-AVoCS 2017, Turin, Italy, September 18-20, 2017,
Proceedings, volume 10471 of LectureNotes in Computer Science,
pp. 217–233. Springer, Berlin (2017). ISBN 978-3-319-67113-0.
https://doi.org/10.1007/978-3-319-67113-0_14

73. Kurtev, I., Schuts, M., Hooman, J., Swagerman, D.-J.: Integrating
interface modeling and analysis in an industrial setting. In: MOD-
ELSWARD, pp. 345–352. SciTePress, Setúbal (2017)

74. Raedts, I., Petkovic, M., Usenko, Y.S., van der Werf, J.M.E.M.,
Groote, J.F., Somers, L.J.: Transformation of BPMN models for
behaviour analysis. In: Augusto, J.C., Barjis, J., Ultes-Nitsche, U.
(eds.) Modelling, Simulation, Verification and Validation of Enter-
prise Information Systems, Proceedings of the 5th International
Workshop onModelling, Simulation,Verification andValidation of
Enterprise Information Systems, MSVVEIS-2007, In conjunction
with, pp. 126–137. INSTICC Press (2007). ISBN 978-972-8865-
95-5

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Olav Bunte is a teacher and PhD
candidate in the field of computer
science at the Eindhoven Univer-
sity of Technology, the Nether-
lands. He got his MSc degree at
the same university and is close to
completing his PhD.

Jasper Denkers is a PhD candi-
date in the field of programming
languages at the Delft University
of Technology, the Netherlands.
He received his MSc degree in
Computer Science from the Delft
University of Technology in 2018.
His research focuses on the indus-
trial application of domain-specific
languages developed with language
workbenches.

123

https://doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1016/j.entcs.2008.03.043
https://doi.org/10.1016/j.entcs.2008.03.043
https://doi.org/10.1007/978-3-030-73758-0_3
https://doi.org/10.1109/ICPC58990.2023.00017
https://doi.org/10.1109/ICPC58990.2023.00017
https://doi.org/10.1016/j.cl.2015.02.001
https://doi.org/10.1145/1868281.1868291
https://doi.org/10.1145/1868281.1868291
https://doi.org/10.1016/j.scico.2009.07.003
https://doi.org/10.1016/j.scico.2009.07.003
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1016/j.scico.2015.11.003
https://doi.org/10.1016/j.scico.2015.11.003
https://doi.org/10.1007/978-3-319-67113-0_14

O. Bunte et al.

Louis C. M. van Gool is Software
Technology Developer at Canon
Production Printing. He received
his MSc and PhD degrees in Com-
puter Science at Eindhoven Uni-
versity of Technology, in 2000
and 2006. After two years as a
postdoctoral researcher, he con-
cluded that his passion is to develop
software technology with a strong
theoretical base, but focussed on
industrial applicability. After work-
ing for two years as a consultant
for ICT NoviQ and two years as
a product developer for Verum, he

moved to Océ (currently known as Canon Production Printing), a com-
pany in his home town Venlo.

Jurgen J. Vinju is a senior
researcher at Centrum Wiskunde
& Informatica and a part-time full
professor at TU Eindhoven. He
is co-designer and maintainer of
the Rascal metaprogramming lan-
guage and co-owner of Swat.engin-
eering BV.

Eelco Visser was Antoni van
Leeuwenhoek Professor of Com-
puter Science and chair of the
Programming Languages Group at
Delft University of Technology.
His research was on the foun-
dation and implementation of declar-
ative specification of programming
languages.

Tim A. C. Willemse is an associate
professor and chair of the For-
mal System Analysis group at the
Eindhoven University of Technol-
ogy. He holds a part-time posi-
tion as a senior research fellow at
TNO-ESI. He received his MSc
in 1998 and was granted a PhD
in 2003, both from the Eindhoven
University of Technology. His re-
search interests cover the theory
and semantics of process algebras
and temporal logics, and algo-
rithms for model checking and
model-based testing. He has a pro-

ven track record of successful applications of Formal Methods to com-
plex systems, which include the ERTMS Hybrid Level 3 standard and
CERN’s control software of the four main experiments at the Large
Hadron Collider. He is the chair of the Industry Committee of For-
mal Methods Europe and is an active member of the Formal Methods
research community.

Andy Zaidman is a full pro-
fessor in software engineering at
Delft University of Technology,
The Netherlands. He received the
MSc and PhD degrees in Com-
puter Science from the Univer-
sity of Antwerp, Belgium, in 2002
and 2006, respectively. His main
research interests include software
evolution, program comprehension,
mining software repositories, soft-
ware quality, and software testing.
He is an active member of the
research community and involved
in the organization of numerous

conferences (WCRE’08, WCRE’09, VISSOFT’14 and MSR’18). In
2013 he was the laureate of a prestigious Vidi mid-career grant, while
in 2019 he received the most prestigious Vici career grant from the
Dutch science foundation NWO.

123

	OIL: an industrial case study in language engineering with Spoofax
	Abstract
	1 Introduction
	1.1 Outline

	2 Spoofax
	2.1 Anatomy of Spoofax projects
	2.2 Data representation with ATerms
	2.3 Syntax definition with SDF3
	2.4 Static semantics with NaBL2
	2.5 Transformation with Stratego
	2.6 Editor services with ESV
	2.7 Testing with SPT

	3 OIL
	3.1 History of OIL
	3.2 Overview of OIL
	3.3 Implementation features

	4 Case study context and method
	4.1 Context
	4.2 Research method
	4.3 Setup

	5 Concrete syntax
	5.1 From XML to custom syntax
	5.2 Composed grammars and disambiguation
	5.3 The Python implementation
	5.4 Evaluation

	6 Abstract syntax
	6.1 Intermediate representations
	6.2 Desugaring
	6.3 Resilient staging
	6.4 The Python implementation
	6.5 Evaluation
	6.5.1 AST representations
	6.5.2 Desugaring transformations

	7 Static semantics
	7.1 Well-formedness checking
	7.2 Cross-file and cross-language analysis
	7.3 The Python implementation
	7.4 Evaluation

	8 Dynamic semantics
	8.1 Division into projects
	8.2 Using static analysis results
	8.3 Configurability of the mCRL2 generator
	8.4 The Python implementation
	8.5 Evaluation

	9 Evaluation
	9.1 Summary
	9.2 Threats to validity
	9.2.1 Construct validity
	9.2.2 Code volume per artifact as proxy for productivity
	9.2.3 Bias in artifact selection
	9.2.4 Internal validity
	9.2.5 Code volume per artifact as proxy for productivity
	9.2.6 Interdependence of implementations
	9.2.7 Design decisions
	9.2.8 Confirmation bias
	9.2.9 Experience
	9.2.10 External validity
	9.2.11 Generalizability of Python
	9.2.12 Generalizability of OIL

	10 Discussion
	10.1 Spoofax's strengths
	10.1.1 Meta-languages suitable for OIL
	10.1.2 Modular language implementation
	10.1.3 IDE support
	10.1.4 Language testing
	10.1.5 Integration support

	10.2 Spoofax's weaknesses
	10.2.1 Limited portability
	10.2.2 Building and runtime performance
	10.2.3 Cross-language static analysis
	10.2.4 Lack of static checking and debugging in NaBL2 and Stratego
	10.2.5 Using static analysis in transformations
	10.2.6 Language evolution and refactoring
	10.2.7 Fine-grained testing
	10.2.8 Editor actions for configurable code generators

	10.3 Lessons learned
	10.4 Spoofax engineering agenda
	10.4.1 Portability
	10.4.2 Language build system
	10.4.3 Runtime performance
	10.4.4 Cross-language static analysis
	10.4.5 Static checking in meta-DSLs
	10.4.6 Stratego debugging
	10.4.7 Integrating static analysis with transformations
	10.4.8 Documentation
	10.4.9 Unit testing Stratego
	10.4.10 ESV-Stratego integration

	11 Related work
	11.1 Language workbench evaluation

	12 Conclusions
	Acknowledgements
	References

